Climate, plankton and cod

被引:123
作者
Beaugrand, Gregory [1 ,2 ]
Kirby, Richard R. [2 ,3 ]
机构
[1] Univ Sci & Technol Lille 1, Stn Marine, CNRS, Lab Oceanol & Geosci,CNRS,UMR LOG 8187, F-62930 Wimereux, France
[2] Univ Plymouth, Sch Marine Sci & Engn, Plymouth PL4 8AA, Devon, England
[3] Univ Plymouth, Sch Biol Sci, Plymouth PL4 8AA, Devon, England
关键词
Atlantic cod; climate; ecosystem-based fisheries management; fishing; plankton; NORTH-ATLANTIC OSCILLATION; GADUS-MORHUA; LARVAL FISH; DEPENDENT MORTALITY; JUNK-FOOD; SEA COD; RECRUITMENT; GROWTH; SHIFTS; VARIABILITY;
D O I
10.1111/j.1365-2486.2009.02063.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
While a few North Atlantic cod stocks are stable, none have increased and many have declined in recent years. Although overfishing is the main cause of most observed declines, this study shows that in some regions, climate by its influence on plankton may exert a strong control on cod stocks, complicating the management of this species that often assumes a constant carrying capacity. First, we investigate the likely drivers of changes in the cod stock in the North Sea by evaluating the potential relationships between climate, plankton and cod. We do this by deriving a Plankton Index that reflects the quality and quantity of plankton food available for larval cod. We show that this Plankton Index explains 46.24% of the total variance in cod recruitment and 68.89% of the variance in total cod biomass. Because the effects of climate act predominantly through plankton during the larval stage of cod development, our results indicate a pronounced sensitivity of cod stocks to climate at the warmer, southern edge of their distribution, for example in the North Sea. Our analyses also reveal for the first time, that at a large basin scale, the abundance of Calanus finmarchicus is associated with a high probability of cod occurrence, whereas the genus Pseudocalanus appears less important. Ecosystem-based fisheries management (EBFM) generally considers the effect of fishing on the ecosystem and not the effect of climate-induced changes in the ecosystem state for the living resources. These results suggest that EBFM must consider the position of a stock within its ecological niche, the direct effects of climate and the influence of climate on the trophodynamics of the ecosystem.
引用
收藏
页码:1268 / 1280
页数:13
相关论文
共 61 条
[1]   The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: Evidence of energetic adaptations [J].
Albers, CS ;
Kattner, G ;
Hagen, W .
MARINE CHEMISTRY, 1996, 55 (3-4) :347-358
[2]   Consequences of regime shifts for marine food webs [J].
Alheit, Juergen .
INTERNATIONAL JOURNAL OF EARTH SCIENCES, 2009, 98 (02) :261-268
[3]  
[Anonymous], 2003, Global Change NewsLetter
[4]  
[Anonymous], 2007, CLIMATE CHANGE 2007
[5]   Plankton effect on cod recruitment in the North Sea [J].
Beaugrand, G ;
Brander, KM ;
Lindley, JA ;
Souissi, S ;
Reid, PC .
NATURE, 2003, 426 (6967) :661-664
[6]  
BEAUGRAND G, 2001, MARINE ECOLOGY PROGR, V219, P205
[7]   Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic [J].
Beaugrand, Gregory ;
Edwards, Martin ;
Brander, Keith ;
Luczak, Christophe ;
Ibanez, Frederic .
ECOLOGY LETTERS, 2008, 11 (11) :1157-1168
[8]   Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas [J].
Beaugrand, Gregory .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2009, 56 (8-10) :656-673
[9]   Rapid biogeographical plankton shifts in the North Atlantic Ocean [J].
Beaugrand, Gregory ;
Luczak, Christophe ;
Edwards, Martin .
GLOBAL CHANGE BIOLOGY, 2009, 15 (07) :1790-1803
[10]   Effects of environmental variability on growth and recruitment in cod (Gadus morhua) using a comparative approach [J].
Brander, K .
OCEANOLOGICA ACTA, 2000, 23 (04) :485-496