A scoring function for docking ligands to low-resolution protein structures

被引:22
作者
Bindewald, E [1 ]
Skolnick, J [1 ]
机构
[1] SUNY Buffalo, Ctr Excellence Bioinformat, Buffalo, NY 14203 USA
关键词
ligand docking; low-resolution protein structures; binding site; scoring function; eraser algorithm;
D O I
10.1002/jcc.20175
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a docking method that uses a scoring function for protein-ligand docking that is designed to maximize the docking success rate for low-resolution protein structures. We find that the resulting scoring function parameters are very different depending on whether they were optimized for high- or low-resolution protein structures. We show that this docking method can be successfully applied to predict the ligand-binding site of low-resolution structures. For a set of 25 protein-ligand complexes, in 76% of the cases, more than 50% of ligand-contacting residues are correctly predicted (using receptor crystal structures where the binding site is unspecified). Using decoys of the receptor structures having a 4 Angstrom RMSD from the native structure, for the same set of complexes, in 72% of the cases, we obtain at least one correctly predicted ligand-contacting residue. Furthermore, using an 81-protein-ligand set described by Jain, in 76 (93.8%) cases, the algorithm correctly predicts more than 50% of the ligand-contacting residues when native protein structures are used. Using 3 Angstrom RMSD from native decoys, in all but two cases (97.5%), the algorithm predicts at least one ligand-binding residue correctly. Finally, compared to the previously published Dolores method, for 298 protein-ligand pairs, the number of cases in which at least half of the specific contacts are correctly predicted is more than four times greater. (C) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:374 / 383
页数:10
相关论文
共 26 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   De novo prediction of three-dimensional structures for major protein families [J].
Bonneau, R ;
Strauss, CEM ;
Rohl, CA ;
Chivian, D ;
Bradley, P ;
Malmström, L ;
Robertson, T ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 322 (01) :65-78
[3]   VALIDATION OF THE GENERAL-PURPOSE TRIPOS 5.2 FORCE-FIELD [J].
CLARK, M ;
CRAMER, RD ;
VANOPDENBOSCH, N .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1989, 10 (08) :982-1012
[4]   FlexE: Efficient molecular docking considering protein structure variations [J].
Claussen, H ;
Buning, C ;
Rarey, M ;
Lengauer, T .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 308 (02) :377-395
[5]   Lessons in molecular recognition: The effects of ligand and protein flexibility on molecular docking accuracy [J].
Erickson, JA ;
Jalaie, M ;
Robertson, DH ;
Lewis, RA ;
Vieth, M .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (01) :45-55
[6]   DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases [J].
Ewing, TJA ;
Makino, S ;
Skillman, AG ;
Kuntz, ID .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2001, 15 (05) :411-428
[7]   Principles of docking: An overview of search algorithms and a guide to scoring functions [J].
Halperin, I ;
Ma, BY ;
Wolfson, H ;
Nussinov, R .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (04) :409-443
[8]  
HOLM L, 1994, NUCLEIC ACIDS RES, V22, P3600
[9]   Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine [J].
Jain, AN .
JOURNAL OF MEDICINAL CHEMISTRY, 2003, 46 (04) :499-511
[10]   Development and validation of a genetic algorithm for flexible docking [J].
Jones, G ;
Willett, P ;
Glen, RC ;
Leach, AR ;
Taylor, R .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 267 (03) :727-748