Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: Intracellular correlates

被引:147
作者
Grenier, F [1 ]
Timofeev, I [1 ]
Steriade, M [1 ]
机构
[1] Univ Laval, Fac Med, Neurophysiol Lab, Quebec City, PQ G1K 7P4, Canada
关键词
D O I
10.1152/jn.00420.2002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multi-site field potential and intracellular recordings from various neocortical areas were used to study very fast oscillations or ripples (80-200 Hz) during electrographic seizures in cats under ketamine-xylazine anesthesia. The animals displayed spontaneously occurring and electrically induced seizures comprising spike-wave complexes (2-3 Hz) and fast runs (10-20 Hz). Neocortical ripples had much higher amplitudes during seizures than during the slow oscillation preceding the onset of seizures. A series of experimental data from the present study supports the hypothesis that ripples are implicated in seizure initiation. Ripples were particularly strong at the onset of seizures and halothane, which antagonizes the occurrence of ripples, also blocked seizures. The firing of electrophysiologically defined cellular types was phase-locked with ripples in simultaneously recorded field potentials. This indicates that ripples during paroxysmal events are associated with a coordination of firing in a majority of neocortical neurons. This was confirmed with dual intracellular recordings. Based on the amplitude that neocortical ripples reach during paroxysmal events, we propose a mechanism by which neocortical ripples during normal network activity could actively participate in the initiation of seizures on reaching a certain threshold amplitude. This mechanism involves a vicious feedback loop in which very fast oscillations in field potentials are a reflection of synchronous action potentials, and in turn these oscillations help generate and synchronize action potentials in adjacent neurons through electrical interactions.
引用
收藏
页码:841 / 852
页数:12
相关论文
共 48 条
  • [1] VERY HIGH-FREQUENCY RHYTHMIC ACTIVITY DURING SEEG SUPPRESSION IN FRONTAL-LOBE EPILEPSY
    ALLEN, PJ
    FISH, DR
    SMITH, SJM
    [J]. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1992, 82 (02): : 155 - 159
  • [2] AMZICA F, 2000, SOC NEUR ABSTR, V26, P734
  • [3] Bracci E, 1999, J NEUROSCI, V19, P8104
  • [4] Hippocampal and entorhinal cortex high-frequency oscillations (100-500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures
    Bragin, A
    Engel, J
    Wilson, CL
    Fried, I
    Mathern, GW
    [J]. EPILEPSIA, 1999, 40 (02) : 127 - 137
  • [5] Local generation of fast ripples in epileptic brain
    Bragin, A
    Mody, I
    Wilson, CL
    Engel, J
    [J]. JOURNAL OF NEUROSCIENCE, 2002, 22 (05) : 2012 - 2021
  • [6] Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection
    Bragin, A
    Engel, J
    Wilson, CL
    Vizentin, E
    Mathern, GW
    [J]. EPILEPSIA, 1999, 40 (09) : 1210 - 1221
  • [7] Bragin A, 1999, HIPPOCAMPUS, V9, P137
  • [8] INTRINSIC FIRING PATTERNS OF DIVERSE NEOCORTICAL NEURONS
    CONNORS, BW
    GUTNICK, MJ
    [J]. TRENDS IN NEUROSCIENCES, 1990, 13 (03) : 99 - 104
  • [9] CONTRERAS D, 1995, J NEUROSCI, V15, P604
  • [10] Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro
    Draguhn, A
    Traub, RD
    Schmitz, D
    Jefferys, JGR
    [J]. NATURE, 1998, 394 (6689) : 189 - 192