Time-reversed dynamical entropy and irreversibility in Markovian random processes

被引:181
作者
Gaspard, P [1 ]
机构
[1] Free Univ Brussels, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
关键词
dynamical randomness; entropy per unit time; Kolmogorov Sinai entropy; entropy production; time reversal; nonequilibrium steady state; stochastic process; Markov chain; jump process; chemical reaction;
D O I
10.1007/s10955-004-3455-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A concept of time-reversed entropy per unit time is introduced in analogy with the entropy per unit time by Shannon, Kolmogorov, and Sinai. This time-reversed entropy per unit time characterizes the dynamical randomness of a stochastic process backward in time, while the standard entropy per unit time characterizes the dynamical randomness forward in time. The difference between the time-reversed and standard entropies per unit time is shown to give the entropy production of Markovian processes in nonequilibrium steady states.
引用
收藏
页码:599 / 615
页数:17
相关论文
共 37 条
[1]   THE THERMODYNAMICS OF COMPUTATION - A REVIEW [J].
BENNETT, CH .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (12) :905-940
[2]  
Billingsley P., 1978, ERGODIC THEORY INFOR
[3]   STEADY-STATE ELECTRICAL-CONDUCTION IN THE PERIODIC LORENTZ GAS [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :569-601
[4]   DERIVATION OF OHM LAW IN A DETERMINISTIC MECHANICAL MODEL [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2209-2212
[5]  
Cornfeld I. P., 1982, Ergodic Theory
[6]   Entropy production of diffusion in spatially periodic deterministic systems [J].
Dorfman, JR ;
Gaspard, P ;
Gilbert, T .
PHYSICAL REVIEW E, 2002, 66 (02)
[7]   CHAOTIC SCATTERING-THEORY OF TRANSPORT AND REACTION-RATE COEFFICIENTS [J].
DORFMAN, JR ;
GASPARD, P .
PHYSICAL REVIEW E, 1995, 51 (01) :28-35
[8]   Entropy production in nonlinear, thermally driven Hamiltonian systems [J].
Eckmann, JP ;
Pillet, CA ;
Rey-Bellet, L .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :305-331
[9]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[10]  
Evans D.J., 1990, STAT MECH NONEQUILIB