Pressure effect on the conformational fluctuation of apomyoglobin in the native state

被引:29
作者
Tanaka, N [1 ]
Ikeda, C
Kanaori, K
Hiraga, K
Konno, T
Kunugi, S
机构
[1] Kyoto Inst Technol, Dept Polymer Sci & Engn, Sakyo Ku, Kyoto 6068585, Japan
[2] Kyoto Inst Technol, Dept Appl Biol, Sakyo Ku, Kyoto 6068585, Japan
[3] Fukui Med Univ, Dept Physiol, Fukui 9101193, Japan
关键词
D O I
10.1021/bi001009g
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have investigated the effect of pressure on fluctuations of the native state of sperm whale apomyoglobin (apoMb) by H/D exchange, fluorescence, and limited proteolysis. The results from intrinsic fluorescence showed that a large fraction of apoMb molecules is in the native conformation in the pressure range from 0.1 to 150 MPa at 293 K and pH 6.0. The H/D exchange of protons of the individual backbone amino acids in this pressure range was monitored by NMR, The rate of H/D exchange was enhanced at high pressure, with the protection factors for some residues decreasing by factors of more than 100 compared to the values at 0.1 MPa. The amplitude of the decrease of the protection factor varied among the individual amino acids on the same secondary structure unit. This result suggests that H/D exchange in apoMb is explained best by the penetration model, in which solvent penetrates into the protein matrix via small motions. The result from limited proteolysis under high pressure showed that a pressure increase does not induce local unfolding of the secondary structure units of apoMb. Conformational fluctuations much smaller than local unfolding evidently provide pathways for water to diffuse into the protein interior, and are enhanced by an increase of pressure.
引用
收藏
页码:12063 / 12068
页数:6
相关论文
共 42 条
[1]   PRIMARY STRUCTURE EFFECTS ON PEPTIDE GROUP HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (01) :75-86
[2]   Pressure-induced perturbation of apomyoglobin structure: Fluorescence studies on native and acidic compact forms [J].
Bismuto, E ;
Sirangelo, I ;
Irace, G ;
Gratton, E .
BIOCHEMISTRY, 1996, 35 (04) :1173-1178
[3]  
CARTER JV, 1978, J BIOL CHEM, V253, P1947
[4]   PRESSURE EFFECTS ON PROTEIN FLEXIBILITY MONOMERIC PROTEINS [J].
CIONI, P ;
STRAMBINI, GB .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 242 (03) :291-301
[5]   THERMODYNAMIC FLUCTUATIONS IN PROTEIN MOLECULES [J].
COOPER, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (08) :2740-2741
[6]   Is apomyoglobin a molten globule? Structural characterization by NMR [J].
Eliezer, D ;
Wright, PE .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 263 (04) :531-538
[7]   PROTEIN FOLDING STUDIED USING HYDROGEN-EXCHANGE LABELING AND 2-DIMENSIONAL NMR [J].
ENGLANDER, SW ;
MAYNE, L .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1992, 21 :243-265
[8]   Probing the conformational state of apomyoglobin by limited proteolysis [J].
Fontana, A ;
Zambonin, M ;
deLaureto, PP ;
DeFilippis, V ;
Clementi, A ;
Scaramella, E .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 266 (02) :223-230
[9]   CORRELATION BETWEEN SITES OF LIMITED PROTEOLYSIS AND SEGMENTAL MOBILITY IN THERMOLYSIN [J].
FONTANA, A ;
FASSINA, G ;
VITA, C ;
DALZOPPO, D ;
ZAMAI, M ;
ZAMBONIN, M .
BIOCHEMISTRY, 1986, 25 (08) :1847-1851
[10]  
FRAUENFELDER H, 1988, ANNU REV BIOPHYS BIO, V17, P451