Efficient lifting wavelet transform for microprocessor and VLSI applications

被引:18
作者
Olkkonen, H [1 ]
Olkkonen, JT
Pesola, P
机构
[1] Univ Kuopio, Dept Appl Phys, FIN-70211 Kuopio, Finland
[2] VTT Elect, Oulu 90571, Finland
[3] Univ Kuopio, AIV Inst Mol Sci, Cognit Neurobiol Lab, FIN-70211 Kuopio, Finland
关键词
lifting scheme; microprocessors; VLSI; wavelet transform;
D O I
10.1109/LSP.2004.840904
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, wavelet analysis has gained an established role in signal and image processing applications. In this paper, we present a discrete wavelet transform algorithm based on the lifting scheme. The Haar wavelet transformed and decimated signals are lifted by the ladder-type network. A unique lifting filter is designed for in-place computation. The present algorithm is especially suitable for microprosessor and VLSI applications since it can be implemented by integer arithmetics using only register shifts and summations.
引用
收藏
页码:120 / 122
页数:3
相关论文
共 10 条
[1]   DISCRETE SPLINE FILTERS FOR MULTIRESOLUTIONS AND WAVELETS OF L(2) [J].
ALDROUBI, A ;
EDEN, M ;
UNSER, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (05) :1412-1432
[2]  
[Anonymous], 1997, SIAM J MATH ANAL
[3]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[4]   An approximation for discrete B-splines in time domain [J].
Ichige, K ;
Kamada, M .
IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (03) :82-84
[5]   Complex wavelets for shift invariant analysis and filtering of signals [J].
Kingsbury, N .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (03) :234-253
[6]   DISCRETE BINOMIAL SPLINES [J].
OLKKONEN, H .
GRAPHICAL MODELS AND IMAGE PROCESSING, 1995, 57 (02) :101-106
[7]  
OLKKONEN H, 1966, GRAPH MODELS PROCESS, V58, P394
[8]   EXACT RECONSTRUCTION TECHNIQUES FOR TREE-STRUCTURED SUBBAND CODERS [J].
SMITH, MJT ;
BARNWELL, TP .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (03) :434-441
[9]   A review of wavelets in biomedical applications [J].
Unser, M ;
Aldroubi, A .
PROCEEDINGS OF THE IEEE, 1996, 84 (04) :626-638
[10]   Mathematical properties of the JPEG2000 wavelet filters [J].
Unser, M ;
Blu, T .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (09) :1080-1090