DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia

被引:112
作者
Milani, Lili [1 ]
Lundmark, Anders [1 ]
Kiialainen, Anna [1 ]
Nordlund, Jessica [1 ]
Flaegstad, Trond [2 ,3 ]
Forestier, Erik [4 ]
Heyman, Mats [5 ]
Jonmundsson, Gudmundur [6 ]
Kanerva, Jukka [7 ]
Schmiegelow, Kjeld [8 ,9 ]
Soderhall, Stefan [5 ]
Gustafsson, Mats G. [1 ]
Lonnerholm, Gudmar [10 ]
Syvanen, Ann-Christine [1 ]
机构
[1] Uppsala Univ, Dept Med Sci, S-75185 Uppsala, Sweden
[2] Univ Tromsoe, Dept Pediat, Tromso, Norway
[3] Univ Hosp, Tromso, Norway
[4] Umea Univ, Dept Clin Sci, Umea, Sweden
[5] Karolinska Univ Hosp, Astrid Lindgren Childrens Hosp, Dept Women & Child Hlth, Childhood Canc Res Unit, Stockholm, Sweden
[6] Landspitalinn, Dept Pediat, Reykjavik, Iceland
[7] Univ Helsinki, Hosp Children & Adolescents, Div Hematol Oncol & Stem Cell Transplantat, Helsinki, Finland
[8] Rigshosp, Pediat Clin 2, DK-2100 Copenhagen, Denmark
[9] Univ Copenhagen, Fac Med, Inst Gynecol Obstet & Pediat, Copenhagen, Denmark
[10] Univ Childrens Hosp, Dept Womens & Childrens Hlth, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
ACUTE LYMPHOCYTIC-LEUKEMIA; CHILDRENS ONCOLOGY GROUP; UNIVERSAL BEAD ARRAYS; T-CELL LEUKEMIA; GENE-EXPRESSION; ABERRANT METHYLATION; COMPETING RISK; PROMOTER; LINEAGE; HYPERMETHYLATION;
D O I
10.1182/blood-2009-04-214668
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Despite improvements in the prognosis of childhood acute lymphoblastic leukemia (ALL), subgroups of patients would benefit from alternative treatment approaches. Our aim was to identify genes with DNA methylation profiles that could identify such groups. We determined the methylation levels of 1320 CpG sites in regulatory regions of 416 genes in cells from 401 children diagnosed with ALL. Hierarchical clustering of 300 CpG sites distinguished between T-lineage ALL and B-cell precursor (BCP) ALL and between the main cytogenetic subtypes of BCP ALL. It also stratified patients with high hyperdiploidy and t(12;21) ALL into 2 subgroups with different probability of relapse. By using supervised learning, we constructed multivariate classifiers by external cross-validation procedures. We identified 40 genes that consistently contributed to accurate discrimination between the main subtypes of BCP ALL and gene sets that discriminated between subtypes of ALL and between ALL and controls in pairwise classification analyses. We also identified 20 individual genes with DNA methylation levels that predicted relapse of leukemia. Thus, methylation analysis should be explored as a method to improve stratification of ALL patients. The genes highlighted in our study are not enriched to specific pathways, but the gene expression levels are inversely correlated to the methylation levels. (Blood. 2010;115:1214-1225)
引用
收藏
页码:1214 / 1225
页数:12
相关论文
共 48 条
[1]   ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia [J].
Agirre, X ;
Román-Gómez, J ;
Jiménez-Velasco, A ;
Garate, L ;
Montiel-Duarte, C ;
Navarro, G ;
Vázquez, I ;
Zalacain, M ;
Calasanz, MJ ;
Heiniger, A ;
Torres, A ;
Minna, JD ;
Prósper, F .
ONCOGENE, 2006, 25 (13) :1862-1870
[2]   Molecular pathogenesis of T-cell leukaemia and lymphoma [J].
Aifantis, Iannis ;
Raetz, Elizabeth ;
Buonamici, Silvia .
NATURE REVIEWS IMMUNOLOGY, 2008, 8 (05) :380-390
[3]  
[Anonymous], 2008, R LANG ENV STAT COMP
[4]   Notch and Ikaros not only converging players in T cell leukemia [J].
Bellavia, Diana ;
Mecarozzi, Marco ;
Campese, Antonio Francesco ;
Grazioli, Paola ;
Gulino, Alberto ;
Screpanti, Isabella .
CELL CYCLE, 2007, 6 (22) :2730-2734
[5]   Gene expression signatures predictive of early response and outcome in high-risk childhood acute lymphoblastic leukemia: A Children's oncology group study on behalf of the Dutch Childhood Oncology Group and the German Cooperative Study Group for childhood acute lymphoblastic leukemia [J].
Bhojwani, Deepa ;
Kang, Huining ;
Menezes, Renee X. ;
Yang, Wenjian ;
Sather, Harland ;
Moskowitz, Naomi P. ;
Min, Dong-Joon ;
Potter, Jeffrey W. ;
Harvey, Richard ;
Hunger, Stephen P. ;
Seibel, Nita ;
Raetz, Elizabeth A. ;
Pieters, Rob ;
Horstmann, Martin A. ;
Relling, Mary V. ;
den Boer, Monique L. ;
Willman, Cheryl L. ;
Carroll, William L. .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (27) :4376-4384
[6]   High-throughput DNA methylation profiling using universal bead arrays [J].
Bibikova, M ;
Lin, ZW ;
Zhou, LX ;
Chudin, E ;
Garcia, EW ;
Wu, B ;
Doucet, D ;
Thomas, NJ ;
Wang, YH ;
Vollmer, E ;
Goldmann, T ;
Seifart, C ;
Jiang, W ;
Barker, DL ;
Chee, MS ;
Floros, J ;
Fan, JB .
GENOME RESEARCH, 2006, 16 (03) :383-393
[7]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[8]   Impact of pre-analytical handling on bone marrow mRNA gene expression [J].
Breit, S ;
Nees, M ;
Schaefer, U ;
Pfoersich, M ;
Hagemeier, C ;
Muckenthaler, M ;
Kulozik, AE .
BRITISH JOURNAL OF HAEMATOLOGY, 2004, 126 (02) :231-243
[9]   A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study [J].
Den Boer, Monique L. ;
van Slegtenhorst, Marjon ;
De Menezes, Renee X. ;
Cheok, Meyling H. ;
Buijs-Gladdines, Jessica G. C. A. M. ;
Peters, Susan T. C. J. M. ;
Van Zutven, Laura C. M. ;
Beverloo, H. Berna ;
Van der Spek, Peter J. ;
Escherich, Gaby ;
Horstmann, Martin A. ;
Janka-Schoub, Gritta E. ;
Kamps, Willem A. ;
Evans, William E. ;
Pieters, Rob .
LANCET ONCOLOGY, 2009, 10 (02) :125-134
[10]   An Integrative Genomic and Epigenomic Approach for the Study of Transcriptional Regulation [J].
Figueroa, Maria E. ;
Reimers, Mark ;
Thompson, Reid F. ;
Ye, Kenny ;
Li, Yushan ;
Selzer, Rebecca R. ;
Fridriksson, Jakob ;
Paietta, Elisabeth ;
Wiernik, Peter ;
Green, Roland D. ;
Greally, John M. ;
Melnick, Ari .
PLOS ONE, 2008, 3 (03)