Self-regularization of chaos in neural systems: Experimental and theoretical results

被引:39
作者
Rabinovich, MI
Abarbanel, HDI
Huerta, R
Elson, R
Selverston, AI
机构
[1] UNIV CALIF SAN DIEGO,DEPT PHYS,LA JOLLA,CA 92093
[2] UNIV CALIF SAN DIEGO,SCRIPPS INST OCEANOG,MARINE PHYS LAB,LA JOLLA,CA 92093
[3] UNIV CALIF SAN DIEGO,DEPT BIOL,LA JOLLA,CA 92093
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1997年 / 44卷 / 10期
基金
美国国家科学基金会;
关键词
chaos; neural assemblies; self-control; synaptic coupling;
D O I
10.1109/81.633889
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The results of neurobiological studies in both vertebrates and invertebrates lead to the general question: How is a population of neurons, whose individual activity is chaotic and uncorrelated able to form functional circuits with regular and stable behavior? What are the circumstances which support these regular oscillations? What are the mechanisms that promote this transition? We address these questions using our experimental and modeling studies describing the behavior of groups of spiking-bursting neurons. We show that the role of inhibitory synaptic coupling between neurons is crucial in the self-control of chaos.
引用
收藏
页码:997 / 1005
页数:9
相关论文
共 19 条
[1]  
Abarbanel H., 1996, Analysis of Observed Chaotic Data
[2]  
ABARBANEL HDI, 1996, USPEKHI FIZICHESKIH, V166, P337
[3]  
ABRBANEL HDI, 1996, NEURAL COMPUTAT, V8, P1567
[4]  
AFRAIMOVICH VS, 1986, IZV VUZ KHIM KH TEKH, V29, P795, DOI DOI 10.1007/BF01034476
[5]   AN ALTERNATING PERIODIC CHAOTIC SEQUENCE OBSERVED IN NEURAL OSCILLATORS [J].
AIHARA, K ;
MATSUMOTO, G ;
ICHIKAWA, M .
PHYSICS LETTERS A, 1985, 111 (05) :251-255
[6]  
[Anonymous], HDB BRAIN THEORY NEU
[7]  
[Anonymous], 1992, NONLINEARITIES ACTIO
[8]  
Buzsaki G., 1994, TEMPORAL CODING BRAI
[9]   ROUTES TO CHAOS IN A MODEL OF A BURSTING NEURON [J].
CANAVIER, CC ;
CLARK, JW ;
BYRNE, JH .
BIOPHYSICAL JOURNAL, 1990, 57 (06) :1245-1251
[10]  
CAROLL TL, 1991, IEEE T CIRCUITS SYST, V38, P453