Boundary conditions and estimates for the linearized Navier-Stokes equations on staggered grids

被引:13
作者
Kress, W [1 ]
Nilsson, J [1 ]
机构
[1] Univ Uppsala, Dept Comp Sci, S-75105 Uppsala, Sweden
关键词
Navier-Stokes equations; staggered grids;
D O I
10.1016/S0045-7930(02)00090-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider the linearized Navier-Stokes equations in two dimensions under specified boundary conditions. We study both the continuous case and a discretization using a second-order finite difference method on a staggered grid and derive estimates for both the analytic solution and the approximation on staggered grids. We present numerical experiments to verify our results. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1093 / 1112
页数:20
相关论文
共 9 条
[1]  
BAKER GA, 1982, MATH COMPUT, V39, P339, DOI 10.1090/S0025-5718-1982-0669634-0
[2]   A Compact Higher Order Finite Difference Method for the Incompressible Navier-Stokes Equations [J].
Brueger, Arnim ;
Nilsson, Jonas ;
Kress, Wendy .
JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) :551-560
[3]  
Gunzburger M. D., 1996, HDB COMPUTATIONAL FL
[4]   Boundary conditions and estimates for the steady Stokes equations on staggered grids [J].
Gustafsson B. ;
Nilsson J. .
Journal of Scientific Computing, 2000, 15 (01) :29-59
[5]  
Gustafsson B., 1995, TIME DEPENDENT PROBL, Vsecond
[6]  
GUSTAFSSON B, 2002, FRONTIERS COMPUTATIO, P165
[7]  
GUSTAFSSON B, IN PRESS FRONT COMPU
[8]  
Kreiss H., 1989, INITIAL BOUNDARY VAL
[9]  
Nilsson J., 2000, THESIS UPPSALA U SWE