On the extreme eigenvalues of Hermitian (block) Toeplitz matrices

被引:102
作者
Serra, S
机构
[1] Dipartimento di Informatica, 56100 Pisa
关键词
D O I
10.1016/S0024-3795(97)00231-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the behavior of the minimum (maximum) eigenvalue lambda(0)((n)) (lambda(n)((n))) of an (n + 1)x(n + 1) Hermitian Toeplitz matrix T-n(f) where f is an integrable real-valued function. Kac, Murdoch, and Szego, Widom, Parter, and R. H. Chan obtained that lambda(0)((n)) - min f = O(1/n(2k)) in the case where f is an element of C-2k at least locally, and f - inf f has a zero of order 2k. We obtain the same result under the second hypothesis alone. Moreover we develop a new tool in order to estimate the extreme eigenvalues of the mentioned matrices, proving that the rate of convergence of lambda(0)((n)) to inf f depends only on the order rho (not necessarily even or integer or finite) of the zero of f - inf f. With the help of this tool, we derive an absolute lower bound for the minimal eigenvalues of Toeplitz matrices generated by nonnegative L-1 functions and also an upper bound for the associated Euclidean condition numbers. Finally, these results are extended to the case of Hermitian block Toeplitz matrices with Toeplitz blocks generated by a bivariate integrable function f. (C) 1998 Elsevier Science Inc.
引用
收藏
页码:109 / 129
页数:21
相关论文
共 20 条
[1]   STABILITY OF METHODS FOR SOLVING TOEPLITZ-SYSTEMS OF EQUATIONS [J].
BUNCH, JR .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (02) :349-364
[3]  
DIBENEDETTO F, 1993, COMPUT MATH APPL, V25, P33
[4]  
Fiorentino G., 1991, Calcolo, V28, P283, DOI 10.1007/BF02575816
[5]  
Golub GH, 2013, Matrix Computations, V4
[6]  
Grenander U, 1984, TOEPLITZ FORMS THEIR
[7]  
GRENANDER U, 1951, ARK MATH, V1, P555
[8]  
GRENANDER U, 1984, STATISTICAL ANAL STA
[9]  
KAC M, 1953, J RATION MECH ANAL, V2, P767
[10]  
PARTER S. V., 1966, T AM MATH SOC, V99, P153