Exploiting the errors: A simple approach for improved volatility forecasting

被引:271
作者
Bollerslev, Tim [1 ,2 ,3 ]
Patton, Andrew J. [1 ,4 ]
Quaedvlieg, Rogier [5 ]
机构
[1] Duke Univ, Dept Econ, 213 Social Sci Bldg,Box 90097, Durham, NC 27708 USA
[2] NBER, Cambridge, MA 02138 USA
[3] CREATES, Aalborg, Denmark
[4] NYU, Stern Sch Business, New York, NY 10003 USA
[5] Maastricht Univ, Dept Finance, NL-6200 MD Maastricht, Netherlands
基金
新加坡国家研究基金会;
关键词
Realized volatility; Forecasting; Measurement errors; HAR; HARQ; MICROSTRUCTURE NOISE; ECONOMETRIC-ANALYSIS; REALIZED VARIANCE; TIME-SERIES; COVARIANCE; KERNELS; MODELS;
D O I
10.1016/j.jeconom.2015.10.007
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a new family of easy-to-implement realized volatility based forecasting models. The models exploit the asymptotic theory for high-frequency realized volatility estimation to improve the accuracy of the forecasts. By allowing the parameters of the models to vary explicitly with the (estimated) degree of measurement error, the models exhibit stronger persistence, and in turn generate more responsive forecasts, when the measurement error is relatively low. Implementing the new class of models for the S&P 500 equity index and the individual constituents of the Dow Jones Industrial Average, we document significant improvements in the accuracy of the resulting forecasts compared to the forecasts from some of the most popular existing models that implicitly ignore the temporal variation in the magnitude of the realized volatility measurement errors. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
[1]   Out of sample forecasts of quadratic variation [J].
Ait-Sahalia, Yacine ;
Mancini, Loriano .
JOURNAL OF ECONOMETRICS, 2008, 147 (01) :17-33
[2]  
Andersen T. G., 2013, Handbook of the Economics of Finance, V2, P1127
[3]   Analytical evaluation of volatility forecasts [J].
Andersen, TG ;
Bollerslev, T ;
Meddahi, N .
INTERNATIONAL ECONOMIC REVIEW, 2004, 45 (04) :1079-1110
[4]   Answering the skeptics: Yes, standard volatility models do provide accurate forecasts [J].
Andersen, TG ;
Bollerslev, T .
INTERNATIONAL ECONOMIC REVIEW, 1998, 39 (04) :885-905
[5]   Modeling and forecasting realized volatility [J].
Andersen, TG ;
Bollerslev, T ;
Diebold, FX ;
Labys, P .
ECONOMETRICA, 2003, 71 (02) :579-625
[6]   Correcting the errors: Volatility forecast evaluation using high-frequency data and realized volatilities [J].
Andersen, TG ;
Bollerslev, T ;
Meddahi, N .
ECONOMETRICA, 2005, 73 (01) :279-296
[7]   Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility [J].
Andersen, Torben G. ;
Bollerslev, Tim ;
Diebold, Francis X. .
REVIEW OF ECONOMICS AND STATISTICS, 2007, 89 (04) :701-720
[8]   A ROBUST NEIGHBORHOOD TRUNCATION APPROACH TO ESTIMATION OF INTEGRATED QUARTICITY [J].
Andersen, Torben G. ;
Dobrev, Dobrislav ;
Schaumburg, Ernst .
ECONOMETRIC THEORY, 2014, 30 (01) :3-59
[9]   Jump-robust volatility estimation using nearest neighbor truncation [J].
Andersen, Torben G. ;
Dobrev, Dobrislav ;
Schaumburg, Ernst .
JOURNAL OF ECONOMETRICS, 2012, 169 (01) :75-93
[10]   Realized volatility forecasting and market microstructure noise [J].
Andersen, Torben G. ;
Bollerslev, Tim ;
Meddahi, Nour .
JOURNAL OF ECONOMETRICS, 2011, 160 (01) :220-234