The honeycomb conjecture

被引:336
作者
Hales, TC [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1007/s004540010071
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article gives a proof of the classical honeycomb conjecture: any partition of the plane into regions of equal area has perimeter at least that of the regular hexagonal honeycomb tiling. [GRAPHICS]
引用
收藏
页码:1 / 22
页数:22
相关论文
共 28 条
[1]  
ALMGREN FJ, 1976, MEM AM MATH SOC, V165
[2]  
[Anonymous], 1952, GROWTH FORM
[3]  
[Anonymous], AGRICULTURE
[4]   Finite and uniform stability of sphere packings [J].
Bezdek, A ;
Bezdek, K ;
Connelly, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 20 (01) :111-130
[5]  
Bonnesen T., 1929, Les problemes de isoperimetres et des isepiphanes
[6]   WHAT ARE ALL THE BEST SPHERE PACKINGS IN LOW DIMENSIONS [J].
CONWAY, JH ;
SLOANE, NJA .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (3-4) :383-403
[7]  
Croft H. T., 1991, SPRINGER SCI BUSINES
[8]  
Darwin, ORIGIN SPECIES
[9]  
Federer H, 1969, Geometric Measure Theory
[10]  
Fejes Toth L., 1964, REGULAR FIGURES