Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy

被引:623
作者
Chen, Yu [1 ]
Chen, Hangrong [1 ]
Guo, Limin [1 ]
He, Qianjun [1 ]
Chen, Feng [1 ]
Zhou, Jian [1 ]
Feng, Jingwei [1 ]
Shi, Jianlin [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
关键词
structural difference; selective etching; homogeneous templating; hollow mesoporous silica; rattle structure; heterogeneous structure; SILICA NANOPARTICLES; HOLLOW SPHERES; SHELL; SIZE; GOLD; ALUMINOSILICATE; IMMOBILIZATION; ENCAPSULATION; NANOSPHERES; STABILITY;
D O I
10.1021/nn901398j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel "structural difference-based selective etching" strategy has been developed to fabricate hollow/rattle-type mesoporous nanostructures, which was achieved by making use of the structural differences, rather than traditional compositional differences, between the core and the shell of a silica core/mesoporous silica shell structure to create hollow interiors. Highly dispersed hollow mesoporous silica spheres with controllable particle/pore sizes could-be synthesized by this method, which show high loading capacity (1222 mg/g) for anticancer drug (doxorubicin). Hemolyticity and cytotoxicity assays of hollow mesoporous silica spheres were conducted, and the synthesized hollow in mesoporous silica spheres with large pores show ultrafast immobilization of protein-based biomolecules (hemoglobin). On the basis of this strategy, different kinds of heterogeneous rattle-type nanostructures with inorganic nanocrystals, such as Au, Fe2O3, and Fe3O4 nanoparticles, as the core and mesoporous silica as the shell were also prepared. This strategy could be extended as a general approach to synthesize various hollow/rattle-type nanostructures by creating adequate structural differences between cores and shells in core/shell structures in nanoscale.
引用
收藏
页码:529 / 539
页数:11
相关论文
共 33 条
[1]   High-temperature-stable catalysts by hollow sphere encapsulation [J].
Arnal, Pablo M. ;
Comotti, Massimiliano ;
Schueth, Ferdi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (48) :8224-8227
[2]   Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity [J].
Boisselier, Elodie ;
Astruc, Didier .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (06) :1759-1782
[3]  
Buchel G, 1998, ADV MATER, V10, P1036, DOI 10.1002/(SICI)1521-4095(199809)10:13<1036::AID-ADMA1036>3.0.CO
[4]  
2-Z
[5]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[6]   Facile and Scalable Synthesis of Tailored Silica "Nanorattle" Structures [J].
Chen, Dong ;
Li, Linlin ;
Tang, Fangqiong ;
Qi, Shuo .
ADVANCED MATERIALS, 2009, 21 (37) :3804-3807
[7]   Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies [J].
Fan, J ;
Lei, J ;
Wang, LM ;
Yu, CZ ;
Tu, B ;
Zhao, DY .
CHEMICAL COMMUNICATIONS, 2003, (17) :2140-2141
[8]   A facile route to hollow nanospheres of mesoporous silica with tunable size [J].
Feng, Zhange ;
Li, Yongsheng ;
Niu, Dechao ;
Li, Liang ;
Zhao, Wenru ;
Chen, Hangrong ;
Li, Lei ;
Gao, Jianhua ;
Ruan, Meiling ;
Shi, Jianlin .
CHEMICAL COMMUNICATIONS, 2008, (23) :2629-2631
[9]  
Giersig M, 1997, ADV MATER, V9, P570, DOI 10.1002/adma.19970090712
[10]   Carbon nanotubes encapsulated in wormlike hollow silica shells [J].
Grzelczak, Marek ;
Correa-Duarte, Miguel A. ;
Liz-Marzan, Luis M. .
SMALL, 2006, 2 (10) :1174-1177