Controlling chaos and the inverse Frobenius-Perron problem: Global stabilization of arbitrary invariant measures

被引:36
作者
Bollt, EM [1 ]
机构
[1] USN Acad, Dept Math, Annapolis, MD 21402 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2000年 / 10卷 / 05期
关键词
D O I
10.1142/S0218127400000736
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The inverse Frobenius-Perron problem (IFPP) is a global open-loop strategy to control chaos. The goal of our IFPP is to design a dynamical system in R-n which is: (1) nearby the original dynamical system, and (2) has a desired invariant density. We reduce the question of stabilizing an arbitrary invariant measure, to the question of a hyperplane intersecting a unit hyperbox; several controllability theorems follow. We present a generalization of Baker maps with an arbitrary grammar and whose FP operator is the required stochastic matrix.
引用
收藏
页码:1033 / 1050
页数:18
相关论文
共 41 条
[1]  
Alligood K. T., 1997, CHAOS INTRO DYNAMICA
[2]   Design of one-dimensional chaotic maps with prescribed statistical properties [J].
Baranovsky, A ;
Daems, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06) :1585-1598
[3]   THE DYNAMICS OF THE HENON MAP [J].
BENEDICKS, M ;
CARLESON, L .
ANNALS OF MATHEMATICS, 1991, 133 (01) :73-169
[4]   SINAI-BOWEN-RUELLE MEASURES FOR CERTAIN HENON MAPS [J].
BENEDICKS, M ;
YOUNG, LS .
INVENTIONES MATHEMATICAE, 1993, 112 (03) :541-576
[5]   CONTROLLING CHAOTIC TRANSPORT THROUGH RECURRENCE [J].
BOLLT, EM ;
MEISS, JD .
PHYSICA D, 1995, 81 (03) :280-294
[6]   Optimal targeting of chaos [J].
Bollt, EM ;
Kostelich, EJ .
PHYSICS LETTERS A, 1998, 245 (05) :399-406
[7]   ERGODIC THEORY OF AXIOM A FLOWS [J].
BOWEN, R ;
RUELLE, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :181-202
[8]   APPROXIMATING MEASURES INVARIANT UNDER HIGHER-DIMENSIONAL CHAOTIC TRANSFORMATIONS [J].
BOYARSKY, A ;
LOU, YS .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :231-244
[9]  
BOYARSKY A, 1981, ADV APPL MATH, V2, P284
[10]  
Boyarsky A., 1997, Laws ofChaos: Invariant Measures and Dynamical Systems in One Dimension