Social Network Model based on Keyword Categorization

被引:7
作者
Bhattacharyya, Prantik [1 ]
Garg, Ankush [1 ]
Wu, S. Felix [1 ]
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
来源
2009 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING | 2009年
关键词
D O I
10.1109/ASONAM.2009.46
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A user profile on an online social network is characterized by its profile entries (keywords). In this paper, we study the relationship between semantic similarity of user keywords and the social network topology. First, we present a 'forest' model to categorize keywords and define the notion of distance between keywords across multiple categorization trees (i.e., a forest). Second, we use the keyword distance to define similarity functions between a pair of users and show how social network topology can be modeled accordingly. Third, we validate our social network topology model, using a simulated social graph, against a real life social graph dataset.
引用
收藏
页码:170 / 175
页数:6
相关论文
共 14 条
[1]   How to search a social network [J].
Adamic, L ;
Adar, E .
SOCIAL NETWORKS, 2005, 27 (03) :187-203
[2]  
[Anonymous], 2003, 1 MONDAY
[3]  
BANKS L, 2009, FIST 09
[4]  
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
[5]  
2-9
[6]  
Fellbaum C., 1998, WordNet, DOI DOI 10.7551/MITPRESS/7287.001.0001
[7]  
HOWE DC, RITA WORDNET JAVA BA
[8]  
Kleinberg J, 2002, ADV NEUR IN, V14, P431
[9]  
Kleinberg J., 2000, STOC'00
[10]   The link-prediction problem for social networks [J].
Liben-Nowell, David ;
Kleinberg, Jon .
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2007, 58 (07) :1019-1031