Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants

被引:254
作者
Pnueli, L
Liang, H
Rozenberg, M
Mittler, R
机构
[1] Iowa State Univ, Inst Plant Sci, Dept Bot, Ames, IA 50011 USA
[2] Technion Israel Inst Technol, Dept Biol, IL-32000 Haifa, Israel
关键词
Arabidopsis; ascorbate peroxidase; DNA array; hydrogen peroxide; oxidative stress; signal transduction;
D O I
10.1046/j.1365-313X.2003.01715.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The accumulation of hydrogen peroxide (H2O2) in plants is typically associated with biotic or abiotic stresses. However, H2O2 is continuously produced in cells during normal metabolism. Yet, little is known about how H2O2 accumulation will affect plant metabolism in the absence of pathogens or abiotic stress. Here, we report that a deficiency in the H2O2-scavenging enzyme, cytosolic ascorbate peroxidase (APX1), results in the accumulation of H2O2 in Arabidopsis plants grown under optimal conditions. Knockout-Apx1 plants were characterized by suppressed growth and development, altered stomatal responses, and augmented induction of heat shock proteins during light stress. The inactivation of Apx1 resulted in the induction of several transcripts encoding signal transduction proteins. These were not previously linked to H2O2 signaling during stress and may belong to a signal transduction pathway specifically involved in H2O2 sensing during normal metabolism. Surprisingly, the expression of transcripts encoding H2O2 scavenging enzymes, such as catalase or glutathione peroxidase, was not elevated in knockout-Apx1 plants. The expression of catalase, two typical plant peroxidases, and several different heat shock proteins was however elevated in knockout-Apx1 plants during light stress. Our results demonstrate that in planta accumulation of H2O2 can suppress plant growth and development, interfere with different physiological processes, and enhance the response of plants to abiotic stress conditions. Our findings also suggest that at least part of the induction of heat shock proteins during light stress in Arabidopsis is mediated by H2O2 that is scavenged by APX1.
引用
收藏
页码:187 / 203
页数:17
相关论文
共 46 条
[1]   Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J].
Allan, AC ;
Fluhr, R .
PLANT CELL, 1997, 9 (09) :1559-1572
[2]   DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS [J].
ALLEN, RD .
PLANT PHYSIOLOGY, 1995, 107 (04) :1049-1054
[3]  
ASADA K, 1974, J BIOL CHEM, V249, P2175
[4]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[5]  
Asada K., 1987, Photoinhibition, P227
[6]   The role of calcium and activated oxygens as signals for controlling cross-tolerance [J].
Bowler, C ;
Fluhr, R .
TRENDS IN PLANT SCIENCE, 2000, 5 (06) :241-246
[7]   MANGANESE SUPEROXIDE-DISMUTASE CAN REDUCE CELLULAR-DAMAGE MEDIATED BY OXYGEN RADICALS IN TRANSGENIC PLANTS [J].
BOWLER, C ;
SLOOTEN, L ;
VANDENBRANDEN, S ;
DERYCKE, R ;
BOTTERMAN, J ;
SYBESMA, C ;
VANMONTAGU, M ;
INZE, D .
EMBO JOURNAL, 1991, 10 (07) :1723-1732
[8]   MAP kinase activation by hypoosmotic stress of tobacco cell suspensions:: towards the oxidative burst response? [J].
Cazalé, AC ;
Droillard, MJ ;
Wilson, C ;
Heberle-Bors, E ;
Barbier-Brygoo, H ;
Laurière, C .
PLANT JOURNAL, 1999, 19 (03) :297-307
[9]   Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant [J].
Conklin, PL ;
Williams, EH ;
Last, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (18) :9970-9974
[10]   Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells [J].
Corpas, FJ ;
Barroso, JB ;
del Río, LA .
TRENDS IN PLANT SCIENCE, 2001, 6 (04) :145-150