On sequential detection of parameter changes in linear regression

被引:31
作者
Horvath, Lajos [1 ]
Kokoszka, Piotr
Steinebach, Josef
机构
[1] Univ Utah, Salt Lake City, UT 84112 USA
[2] Utah State Univ, Logan, UT 84322 USA
[3] Univ Cologne, D-5000 Cologne, Germany
基金
美国国家科学基金会;
关键词
Darling-Erdos limit theorem; linear regression model; sequential monitoring;
D O I
10.1016/j.spl.2006.12.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Horvath et al. [2004. Monitoring changes in linear models. J. Statist. Plann. Inference 126, 225-251] developed a family of monitoring procedures to detect a change in the parameters of a linear regression model. These procedures, which are akin to the schemes proposed by Chu et al. [1996. Monitoring structural change. Econometrica 64, 1045-1065], depend on a parameter 0 <= gamma < 1/2. If gamma is close to 1/2, the detection delay is small, so it is desirable to consider the case gamma =1/2, but an extension is not obvious. We show that it can be developed by establishing a Darling-Erdos type limit theorem. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:885 / 895
页数:11
相关论文
共 12 条
[1]   Delay time in sequential detection of change [J].
Aue, A ;
Horváth, L .
STATISTICS & PROBABILITY LETTERS, 2004, 67 (03) :221-231
[2]   Change-point monitoring in linear models [J].
Aue, Alexander ;
Horvath, Lajos ;
Huskova, Marie ;
Kokoszka, Piotr .
ECONOMETRICS JOURNAL, 2006, 9 (03) :373-403
[3]   Monitoring structural change [J].
Chu, CSJ ;
Stinchcombe, M ;
White, H .
ECONOMETRICA, 1996, 64 (05) :1045-1065
[4]  
Csorgo M, 1997, LIMIT THEOREMS CHANG
[5]  
Csorgo M., 1981, Probability and Mathematical Statistics: a series of monographs and textbooks
[6]  
CsoRGo M., 1993, Weighted approximations in probability and statistics
[7]   A LIMIT THEOREM FOR THE MAXIMUM OF NORMALIZED SUMS OF INDEPENDENT RANDOM VARIABLES [J].
DARLING, DA ;
ERDOS, P .
DUKE MATHEMATICAL JOURNAL, 1956, 23 (01) :143-155
[8]   Monitoring changes in linear models [J].
Horváth, L ;
Husková, M ;
Kokoszka, P ;
Steinebach, J .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 126 (01) :225-251
[9]   APPROXIMATION OF PARTIAL SUMS OF INDEPENDENT RVS, AND SAMPLE DF .2. [J].
KOMLOS, J ;
MAJOR, P ;
TUSNADY, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 34 (01) :33-58
[10]   APPROXIMATION OF PARTIAL SUMS OF INDEPENDENT RV-S, AND SAMPLE DFI [J].
KOMLOS, J ;
MAJOR, P ;
TUSNADY, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 32 (1-2) :111-131