Metabolite Stress and Tolerance in the Production of Biofuels and Chemicals: Gene-Expression-Based Systems Analysis of Butanol, Butyrate, and Acetate Stresses in the Anaerobe Clostridium acetobutylicum

被引:185
作者
Alsaker, Keith V. [1 ]
Paredes, Carlos [1 ]
Papoutsakis, Eleftherios T. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[2] Univ Delaware, Dept Chem Engn, Newark, DE 19711 USA
[3] Delaware Biotechnol Inst, Newark, DE 19711 USA
基金
美国国家科学基金会;
关键词
acid and solvent tolerance; chemicals from renewables; genome-scale analysis; systems analysis; pathway analysis; microarrays; ORGANIC-SOLVENT TOLERANCE; ESCHERICHIA-COLI; TRANSCRIPTIONAL ANALYSIS; ACETIC-ACID; LIPID-COMPOSITION; DNA MICROARRAYS; ATCC; 824; MOLECULAR CHARACTERIZATION; HOMOCYSTEINE TOXICITY; FERMENTATION ACIDS;
D O I
10.1002/bit.22628
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolite accumulation has pleiotropic, toxic, or beneficial effects on cell physiology, but such effects are not well understood at the molecular level. Cells respond and adapt to metabolite stress by mechanisms largely unexplored, especially in the context of multiple and simultaneous stresses. Solventogenic and related clostridia have an inherent advantage for production of biofuels and chemicals directly from cellulosic material and other complex carbohydrates, but issues of product/metabolite tolerance and related culture productivities remain. Using DNA microarray-based gene expression analysis, the transcriptional-stress responses of Clostridium acetobutylicum to fermentation acids acetate and butyrate and the solvent product butanol were analyzed and compared in the context of cell physiology. Ontological analysis demonstrated that stress by all three metabolites resulted in upregulation of genes related to post-translational modifications and chaperone activity, and downregulation of the translation-machinery genes. Motility genes were downregulated by acetate-stress only. The general metabolite stress included upregulation of numerous stress genes (dnaK, groES, groEL, hsp90, hsp18, clpC, and htrA), the solventogenic operon aad-ctfA-ctfB, and other solventogenic genes. Acetate stress downregulated expression of the butyryl-CoA- and butyrate-formation genes, while butyrate stress downregulated expression of acetate-formation genes. Pyrimidine-biosynthesis genes were downregulated by most stresses, but purine-biosynthesis genes were upregulated by acetate and butyrate, possibly for thiamine and histidine biosynthesis. Methionine-biosynthesis genes were upregulated by acetate stress, indicating a possibly conserved stress response mechanism also observed in Escherichia coli. Nitrogen-fixation gene expression was upregulated by acetate stress. Butyrate stress upregulated many iron-metabolism genes, riboflavin-biosynthesis genes, and several genes related to cellular repair from oxidative stress, such as perR and superoxide dismutases. Butanol stress upregulated the glycerol metabolism genes glpA and glpF. Surprisingly, metabolite stress had no apparent effect on the expression of the sporulation-cascade genes. It is argued that the list of upregulated genes in response to the three metabolite stresses includes several genes whose overexpression would likely impart tolerance, thus making the information generated in this study, a valuable source for the development of tolerant recombinant strains. Biotechnol. Bioeng. 2010; 105: 1131-1147. (C) 2009 Wiley Periodicals, Inc.
引用
收藏
页码:1131 / 1147
页数:17
相关论文
共 95 条
[1]   Design, optimization and validation of genomic DNA microarrays for examining the Clostridium acetobutylicum transcriptome [J].
Alsaker, KV ;
Paredes, CJ ;
Papoutsakis, ET .
BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2005, 10 (05) :432-443
[2]   Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress [J].
Alsaker, KV ;
Spitzer, TR ;
Papoutsakis, ET .
JOURNAL OF BACTERIOLOGY, 2004, 186 (07) :1959-1971
[3]   Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum [J].
Alsaker, KV ;
Papoutsakis, ET .
JOURNAL OF BACTERIOLOGY, 2005, 187 (20) :7103-7118
[4]   Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response [J].
Arnold, CN ;
McElhanon, J ;
Lee, A ;
Leonhart, R ;
Siegele, DA .
JOURNAL OF BACTERIOLOGY, 2001, 183 (07) :2178-2186
[5]   EFFECT OF BUTANOL CHALLENGE AND TEMPERATURE ON LIPID-COMPOSITION AND MEMBRANE FLUIDITY OF BUTANOL-TOLERANT CLOSTRIDIUM-ACETOBUTYLICUM [J].
BAER, SH ;
BLASCHEK, HP ;
SMITH, TL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (12) :2854-2861
[6]   ELECTRON-SPIN RESONANCE ANALYSIS OF THE EFFECT OF BUTANOL ON THE MEMBRANE FLUIDITY OF INTACT-CELLS OF CLOSTRIDIUM-ACETOBUTYLICUM [J].
BAER, SH ;
BRYANT, DL ;
BLASCHEK, HP .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (10) :2729-2731
[7]   EXPRESSION OF HEAT-SHOCK GENES IN CLOSTRIDIUM-ACETOBUTYLICUM [J].
BAHL, H ;
MULLER, H ;
BEHRENS, S ;
JOSEPH, H ;
NARBERHAUS, F .
FEMS MICROBIOLOGY REVIEWS, 1995, 17 (03) :341-348
[8]   UNCOUPLING BY ACETIC-ACID LIMITS GROWTH OF AND ACETOGENESIS BY CLOSTRIDIUM-THERMOACETICUM [J].
BARONOFSKY, JJ ;
SCHREURS, WJA ;
KASHKET, ER .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1984, 48 (06) :1134-1139
[9]   Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostfidium acetobutylicum [J].
Borden, Jacob R. ;
Papoutsakis, Eleftherios Terry .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (09) :3061-3068
[10]   EFFECTS OF BUTANOL ON CLOSTRIDIUM-ACETOBUTYLICUM [J].
BOWLES, LK ;
ELLEFSON, WL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 50 (05) :1165-1170