Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids

被引:156
作者
Kilian, O [1 ]
Kroth, PG [1 ]
机构
[1] Univ Konstanz, Fachbereich Biol, D-7750 Constance, Germany
关键词
diatom; chloroplast; import; evolution; presequence;
D O I
10.1111/j.1365-313X.2004.02294.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Several groups of algae evolved by secondary endocytobiosis, which is defined as the uptake of a eukaryotic alga into a eukaryotic host cell and the subsequent transformation of the endosymbiont into an organelle. Due to this explicit evolutionary history such algae possess plastids that are surrounded by either three or four membranes. Protein targeting into plastids of these organisms depends on N-terminal bipartite presequences consisting of a signal and a transit peptide domain. This suggests that different protein targeting systems may have been combined during establishment of secondary endocytobiosis to enable the transport of proteins into the plastids. Here we demonstrate the presence of an apparently new type of transport into diatom plastids. We analyzed protein targeting into the plastids of diatoms and identified a conserved amino acid sequence motif within plastid preprotein targeting sequences. We expressed several diatom plastid presequence:GFP fusion proteins with or without modifications within that motif in the diatom Phaeodactylum tricornutum and found that a single conserved phenylalanine is crucial for protein transport into the diatom plastids in vivo, thus indicating the presence of a so far unknown new type of targeting signal. We also provide experimental data about the minimal requirements of a diatom plastid targeting presequence and demonstrate that the signal peptides of plastid preproteins and of endoplasmic reticulum-targeted preproteins in diatoms are functionally equivalent. Furthermore we show that treatment of the cells with Brefeldin A arrests protein transport into the diatom plastids suggesting that a vesicular transport step within the plastid membranes may occur.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 35 条
[1]   In vivo characterization of diatom multipartite plastid targeting signals [J].
Apt, KE ;
Zaslavkaia, L ;
Lippmeier, JC ;
Lang, M ;
Kilian, O ;
Wetherbee, R ;
Grossman, AR ;
Kroth, PG .
JOURNAL OF CELL SCIENCE, 2002, 115 (21) :4061-4069
[2]  
APT KE, 1995, PLANT PHYSIOL, V109, P339
[3]   The genome of the diatom Thalassiosira pseudonana:: Ecology, evolution, and metabolism [J].
Armbrust, EV ;
Berges, JA ;
Bowler, C ;
Green, BR ;
Martinez, D ;
Putnam, NH ;
Zhou, SG ;
Allen, AE ;
Apt, KE ;
Bechner, M ;
Brzezinski, MA ;
Chaal, BK ;
Chiovitti, A ;
Davis, AK ;
Demarest, MS ;
Detter, JC ;
Glavina, T ;
Goodstein, D ;
Hadi, MZ ;
Hellsten, U ;
Hildebrand, M ;
Jenkins, BD ;
Jurka, J ;
Kapitonov, VV ;
Kröger, N ;
Lau, WWY ;
Lane, TW ;
Larimer, FW ;
Lippmeier, JC ;
Lucas, S ;
Medina, M ;
Montsant, A ;
Obornik, M ;
Parker, MS ;
Palenik, B ;
Pazour, GJ ;
Richardson, PM ;
Rynearson, TA ;
Saito, MA ;
Schwartz, DC ;
Thamatrakoln, K ;
Valentin, K ;
Vardi, A ;
Wilkerson, FP ;
Rokhsar, DS .
SCIENCE, 2004, 306 (5693) :79-86
[4]   TARGETING PROTEINS TO DIATOM PLASTIDS INVOLVES TRANSPORT THROUGH AN ENDOPLASMIC-RETICULUM [J].
BHAYA, D ;
GROSSMAN, A .
MOLECULAR & GENERAL GENETICS, 1991, 229 (03) :400-404
[5]   FINE STRUCTURE AND ORGANELLE ASSOCIATIONS IN BROWN ALGAE [J].
BOUCK, GB .
JOURNAL OF CELL BIOLOGY, 1965, 26 (02) :523-+
[6]   Chloroplast transit peptides: structure, function and evolution [J].
Bruce, BD .
TRENDS IN CELL BIOLOGY, 2000, 10 (10) :440-447
[7]   The paradox of plastid transit peptides: conservation of function despite divergence in primary structure [J].
Bruce, BD .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2001, 1541 (1-2) :2-21
[8]   Vacuole biogenesis in Saccharomyces cerevisiae:: Protein transport pathways to the yeast vacuole [J].
Bryant, NJ ;
Stevens, TH .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (01) :230-+
[9]   Membrane heredity and early chloroplast evolution [J].
Cavalier-Smith, T .
TRENDS IN PLANT SCIENCE, 2000, 5 (04) :174-182
[10]   Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae) [J].
Cavalier-Smith, T .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2003, 358 (1429) :109-133