Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase

被引:356
作者
Counter, CM
Meyerson, M
Eaton, EN
Ellisen, LW
Caddle, SD
Haber, DA
Weinberg, RA
机构
[1] MIT, Dept Biol, Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[2] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Ctr Canc, Charlestown, MA 02114 USA
关键词
telomerase; hTERT; hEST2; cellular immortalization;
D O I
10.1038/sj.onc.1201882
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The expression of telomerase, the enzyme that synthesizes telomeric DNA de novo, is suppressed in normal somatic human cells but is reactivated during tumorigenesis. This reactivation appears to arrest the normal loss of telomeric DNA incurred as human cells divide, Since continual loss of telomeric DNA is predicted to eventually limit cell proliferation, activation of telomerase in cancer cells may represent an important step in the acquisition of the cell immortalization which occurs during tumor progression. The telomerase holoenzyme is composed of both RNA and protein subunits, In humans, mRNA expression of hTERT (hEST2), the candidate telomerase catalytic subunit gene, appears to parallel the levels of telomerase enzyme activity, suggesting that induction of hTERT is necessary and perhaps sufficient for expression of telomerase activity in tumor cells. To test this model directly, we ectopically expressed an epitope-tagged version of hTERT in telomerase-negative cells and show that telomerase activity was induced to levels comparable to those seen in immortal telomerase-positive cells and that the expressed hTERT protein was physically associated with the cellular telomerase activity. We conclude that synthesis of the hTERT telomerase subunit represents the rate-limiting determinant of telomerase activity in these cells and that this protein, once expressed, becomes part of the functional telomerase holoenzyme.
引用
收藏
页码:1217 / 1222
页数:6
相关论文
共 26 条
  • [1] Avilion AA, 1996, CANCER RES, V56, P645
  • [2] The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit
    Bryan, TM
    Marusic, L
    Bacchetti, S
    Namba, M
    Reddel, RR
    [J]. HUMAN MOLECULAR GENETICS, 1997, 6 (06) : 921 - 926
  • [3] TELOMERE ELONGATION IN IMMORTAL HUMAN-CELLS WITHOUT DETECTABLE TELOMERASE ACTIVITY
    BRYAN, TM
    ENGLEZOU, A
    GUPTA, J
    BACCHETTI, S
    REDDEL, RR
    [J]. EMBO JOURNAL, 1995, 14 (17) : 4240 - 4248
  • [4] TELOMERASE ACTIVITY IN HUMAN OVARIAN-CARCINOMA
    COUNTER, CM
    HIRTE, HW
    BACCHETTI, S
    HARLEY, CB
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (08) : 2900 - 2904
  • [5] TELOMERE SHORTENING ASSOCIATED WITH CHROMOSOME INSTABILITY IS ARRESTED IN IMMORTAL CELLS WHICH EXPRESS TELOMERASE ACTIVITY
    COUNTER, CM
    AVILION, AA
    LEFEUVRE, CE
    STEWART, NG
    GREIDER, CW
    HARLEY, CB
    BACCHETTI, S
    [J]. EMBO JOURNAL, 1992, 11 (05) : 1921 - 1929
  • [6] The catalytic subunit of yeast telomerase
    Counter, CM
    Meyerson, M
    Eaton, EN
    Weinberg, RA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (17) : 9202 - 9207
  • [7] THE RNA COMPONENT OF HUMAN TELOMERASE
    FENG, JL
    FUNK, WD
    WANG, SS
    WEINRICH, SL
    AVILION, AA
    CHIU, CP
    ADAMS, RR
    CHANG, E
    ALLSOPP, RC
    YU, JH
    LE, SY
    WEST, MD
    HARLEY, CB
    ANDREWS, WH
    GREIDER, CW
    VILLEPONTEAU, B
    [J]. SCIENCE, 1995, 269 (5228) : 1236 - 1241
  • [8] THE TELOMERE TERMINAL TRANSFERASE OF TETRAHYMENA IS A RIBONUCLEOPROTEIN ENZYME WITH 2 KINDS OF PRIMER SPECIFICITY
    GREIDER, CW
    BLACKBURN, EH
    [J]. CELL, 1987, 51 (06) : 887 - 898
  • [9] IDENTIFICATION OF A SPECIFIC TELOMERE TERMINAL TRANSFERASE-ACTIVITY IN TETRAHYMENA EXTRACTS
    GREIDER, CW
    BLACKBURN, EH
    [J]. CELL, 1985, 43 (02) : 405 - 413
  • [10] GREIDER CW, 1995, TELOMERES, P35