Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots

被引:208
作者
Stadler, R
Wright, KM
Lauterbach, C
Amon, G
Gahrtz, M
Feuerstein, A
Oparka, KJ
Sauer, N
机构
[1] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany
[2] Scottish Crop Res Inst, Cell Cell Commun Programme, Dundee DD2 5DA, Scotland
关键词
AtSUC2; companion cells; GFP; phloem; plasmodesmata; size exclusion limit;
D O I
10.1111/j.1365-313X.2004.02298.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Transgenic Arabidopsis plants were constructed to express a range of GFP-fusion proteins (36-67 kDa) under the companion cell (CC)-specific AtSUC2 promoter. These plants were used to monitor the trafficking of these GFP-fusion proteins from the CCs into the sieve elements (SEs) and their subsequent translocation within and out of the phloem. The results revealed a large size exclusion limit (SEL) (>67 kDa) for the plasmodesmata connecting SEs and CCs in the loading phloem. Membrane-anchored GFP-fusions and a GFP variant targeted to the endoplasmic reticulum (ER) remained inside the CCs and were used as 'zero trafficking' controls. In contrast, free GFP and all soluble GFP-fusions, moved from the CCs into the SEs and were subsequently translocated through the phloem. Phloem unloading and post-phloem transport of these mobile GFP-fusions were studied in root tips, where post-phloem transport occurred only for the free form of GFP. All of the other soluble GFP-fusion variants were unloaded and restricted to a narrow zone of cells immediately adjacent to the mature protophloem. It appears that this domain of cells, which has a peripheral SEL of about 27-36 kDa, allows protein exchange between protophloem SEs and surrounding cells, but restricts general access of large proteins into the root tip. The presented data provide additional information on phloem development in Arabidopsis in relation to the formation of symplasmic domains.
引用
收藏
页码:319 / 331
页数:13
相关论文
共 65 条
[1]   Symplastic continuity between companion cells and the translocation stream: Long-distance transport is controlled by retention and retrieval mechanisms in the phloem [J].
Ayre, BG ;
Keller, F ;
Turgeon, R .
PLANT PHYSIOLOGY, 2003, 131 (04) :1518-1528
[2]   Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata [J].
Balachandran, S ;
Xiang, Y ;
Schobert, C ;
Thompson, GA ;
Lucas, WJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (25) :14150-14155
[3]   PmSUC3:: Characterization of a SUT2/SUC3-type sucrose transporter from Plantago major [J].
Barth, I ;
Meyer, S ;
Sauer, N .
PLANT CELL, 2003, 15 (06) :1375-1385
[4]   NEW PLANT BINARY VECTORS WITH SELECTABLE MARKERS LOCATED PROXIMAL TO THE LEFT T-DNA BORDER [J].
BECKER, D ;
KEMPER, E ;
SCHELL, J ;
MASTERSON, R .
PLANT MOLECULAR BIOLOGY, 1992, 20 (06) :1195-1197
[5]   A tale of three cell types: Alkaloid biosynthesis is localized to sieve elements in opium poppy [J].
Bird, DA ;
Franceschi, VR ;
Facchini, PJ .
PLANT CELL, 2003, 15 (11) :2626-2635
[6]   APL regulates vascular tissue identity in Arabidopsis [J].
Bonke, M ;
Thitamadee, S ;
Mähönen, AP ;
Hauser, MT ;
Helariutta, Y .
NATURE, 2003, 426 (6963) :181-186
[7]   Systemic transport of RNA in plants [J].
Citovsky, V ;
Zambryski, P .
TRENDS IN PLANT SCIENCE, 2000, 5 (02) :52-54
[8]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[9]  
COLE L, 1991, J CELL SCI, V99, P545
[10]   Phloem transport: Are you chaperoned? [J].
Crawford, KM ;
Zambryski, PC .
CURRENT BIOLOGY, 1999, 9 (08) :R281-R285