How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells?

被引:206
作者
Cameron, PJ
Peter, LM [1 ]
Hore, S
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[2] Freiburg Mat Res Ctr, D-79110 Freiburg, Germany
关键词
D O I
10.1021/jp0405759
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The role of the conducting glass substrate (fluorine-doped tin oxide, FTO) in the back reaction of electrons with tri-iodide ions in dye-sensitized nanocrystalline solar cells (DSCs) has been investigated using thin-layer electrochemical cells that are analogues of the DSCs. The rate of back reaction is dependent on the type of FTO and the thermal treatment. The results show that this back-reaction route cannot be neglected in DSCs, particularly at lower light intensities, where it is the dominant route for the back transfer of electrons to tri-iodide. This conclusion is confirmed by measurements of the intensity dependence of the photovoltages of DSCs with and without blocking layers. It follows that blocking layers should be used to prevent the back reaction in mechanistic studies in which the light intensity is varied over a wide range. Conclusions based on studies of the intensity dependence of the parameters of DSCs such as photovoltage and electron lifetime in cells without blocking layers, must be critically re-examined.
引用
收藏
页码:930 / 936
页数:7
相关论文
共 24 条
[1]  
Bach U., 2001, Proceedings of the SPIE - The International Society for Optical Engineering, V4108, P1, DOI 10.1117/12.416937
[2]   Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells.: Nonequilibrium steady-state statistics and interfacial electron transfer via surface states [J].
Bisquert, J ;
Zaban, A ;
Salvador, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (34) :8774-8782
[3]   Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells [J].
Cameron, PJ ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (51) :14394-14400
[4]   Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells [J].
Cameron, PJ ;
Peter, LM ;
Zakeeruddin, SM ;
Grätzel, M .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1447-1453
[5]  
CAMERON PJ, 2004, UNPUB
[6]   A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells [J].
Duffy, NW ;
Peter, LM ;
Rajapakse, RMG ;
Wijayantha, KGU .
ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (09) :658-662
[7]  
F Allen J Bard L.R., 2001, Electrochemical Methods: Fundamentals and Applications
[8]   Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells [J].
Fisher, AC ;
Peter, LM ;
Ponomarev, EA ;
Walker, AB ;
Wijayantha, KGU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (05) :949-958
[9]   Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells [J].
Huang, SY ;
Schlichthorl, G ;
Nozik, AJ ;
Gratzel, M ;
Frank, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (14) :2576-2582
[10]   HIGHLY EFFICIENT SEMICONDUCTING TIO2 PHOTOELECTRODES PREPARED BY AEROSOL PYROLYSIS [J].
KAVAN, L ;
GRATZEL, M .
ELECTROCHIMICA ACTA, 1995, 40 (05) :643-652