Simulation methods for chemically specific modeling of electrochemical interfaces

被引:10
作者
Halley, JW [1 ]
Schelling, P
Duan, Y
机构
[1] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[2] Argonne Natl Lab, Argonne, IL 60439 USA
关键词
simulation; modeling; electrochemical interfaces;
D O I
10.1016/S0013-4686(00)00578-8
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We present progress in simulation of electrochemical interfaces. The problem is one of a larger class of materials related simulation challenges in which one needs to couple calculations spanning about 10 orders of magnitude in length and time scale in order to produce macroscopic predictions. Generally, methods within each scale are available but robust and reliable methods for coupling one scale to another are not. We discuss methods for coupling the electronic structure scale to the atomic scale and the atomic scale to higher length scales. At the electronic scale, quantum chemical, Hartree-Fock based methods and solid-state, density functional methods, while working from the same principles, are both useful in the appropriate electrochemical context. To study oxides, methods in which tight binding molecular dynamics models are fitted to plane wave local density electronic structure results with applications to titania and other rutile structure oxides are described in more detail. At the higher scale, we discuss progress on renormalization of molecular dynamics to permit it to be used on longer time and length scales in the context of studies of polymer electrolytes of interest in battery development programs. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 20 条
[1]  
BADIALI JP, 1983, J ELECTROCHEM CHEM, V143, P173
[2]   Adhesive energy and charge transfer for MgO/Cu heterophase interfaces [J].
Benedek, R ;
Minkoff, M ;
Yang, LH .
PHYSICAL REVIEW B, 1996, 54 (11) :7697-7700
[3]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[4]   Theory and experiment on the cuprous-cupric electron transfer rate at a copper electrode [J].
Halley, JW ;
Smith, BB ;
Walbran, S ;
Curtiss, LA ;
Rigney, RO ;
Sutjianto, A ;
Hung, NC ;
Yonco, RM ;
Nagy, Z .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6538-6552
[5]  
HALLEY JW, 1996, COMPUTER AIDED MAT D, V3, P385
[6]  
Jackson J. D., 1975, CLASSICAL ELECTRODYN
[7]   Atomic structure of solid and liquid polyethylene oxide [J].
Johnson, JA ;
Saboungi, ML ;
Price, DL ;
Ansell, S ;
Russell, TP ;
Halley, JW ;
Nielsen, B .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (16) :7005-7010
[8]   Monte Carlo simulations of a simple model for the electrocatalytic CO oxidation on platinum [J].
Koper, MTM ;
Jansen, APJ ;
van Santen, RA ;
Lukkien, JJ ;
Hilbers, PAJ .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (14) :6051-6062
[9]   Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model [J].
Kovalenko, A ;
Hirata, F .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (20) :10095-10112
[10]   A molecular dynamics model of the amorphous regions of polyethylene oxide [J].
Lin, B ;
Boinske, PT ;
Halley, JW .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (04) :1668-1681