Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions

被引:599
作者
Jeong, Jin Seo [1 ]
Kim, Youn Shic [1 ]
Baek, Kwang Hun [1 ]
Jung, Harin [1 ]
Ha, Sun-Hwa [3 ]
Do Choi, Yang [2 ]
Kim, Minkyun [2 ]
Reuzeau, Christophe [4 ]
Kim, Ju-Kon [1 ]
机构
[1] Myongji Univ, Sch Biotechnol & Environm Engn, Yongin 449728, South Korea
[2] Seoul Natl Univ, Sch Agr Biotechnol, Seoul 151921, South Korea
[3] Natl Acad Agr Sci, Suwon 441707, South Korea
[4] CropDesign NV, B-9052 Ghent, Belgium
关键词
RESPONSIVE GENE-EXPRESSION; WIDE COMPARATIVE-ANALYSIS; NO-APICAL-MERISTEM; ORYZA-SATIVA L; TRANSCRIPTION FACTORS; FUNCTIONAL-ANALYSIS; ABIOTIC STRESS; TREHALOSE ACCUMULATION; FREEZING TOLERANCE; SEQUENCE-ANALYSIS;
D O I
10.1104/pp.110.154773
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought poses a serious threat to the sustainability of rice (Oryza sativa) yields in rain-fed agriculture. Here, we report the results of a functional genomics approach that identified a rice NAC (an acronym for NAM [No Apical Meristem], ATAF1-2, and CUC2 [Cup-Shaped Cotyledon]) domain gene, OsNAC10, which improved performance of transgenic rice plants under field drought conditions. Of the 140 OsNAC genes predicted in rice, 18 were identified to be induced by stress conditions. Phylogenic analysis of the 18 OsNAC genes revealed the presence of three subgroups with distinct signature motifs. A group of OsNAC genes were prescreened for enhanced stress tolerance when overexpressed in rice. OsNAC10, one of the effective members selected from prescreening, is expressed predominantly in roots and panicles and induced by drought, high salinity, and abscisic acid. Overexpression of OsNAC10 in rice under the control of the constitutive promoter GOS2 and the root-specific promoter RCc3 increased the plant tolerance to drought, high salinity, and low temperature at the vegetative stage. More importantly, the RCc3: OsNAC10 plants showed significantly enhanced drought tolerance at the reproductive stage, increasing grain yield by 25% to 42% and by 5% to 14% over controls in the field under drought and normal conditions, respectively. Grain yield of GOS2: OsNAC10 plants in the field, in contrast, remained similar to that of controls under both normal and drought conditions. These differences in performance under field drought conditions reflect the differences in expression of OsNAC10-dependent target genes in roots as well as in leaves of the two transgenic plants, as revealed by microarray analyses. Root diameter of the RCc3: OsNAC10 plants was thicker by 1.25-fold than that of the GOS2: OsNAC10 and nontransgenic plants due to the enlarged stele, cortex, and epidermis. Overall, our results demonstrated that root-specific overexpression of OsNAC10 enlarges roots, enhancing drought tolerance of transgenic plants, which increases grain yield significantly under field drought conditions.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 44 条
[1]   Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant [J].
Aida, M ;
Ishida, T ;
Fukaki, H ;
Fujisawa, H ;
Tasaka, M .
PLANT CELL, 1997, 9 (06) :841-857
[2]   MOLECULAR RESPONSES TO WATER-DEFICIT [J].
BRAY, EA .
PLANT PHYSIOLOGY, 1993, 103 (04) :1035-1040
[3]   The Low-Oxygen-Induced NAC Domain Transcription Factor ANAC102 Affects Viability of Arabidopsis Seeds following Low-Oxygen Treatment [J].
Christianson, Jed A. ;
Wilson, Iain W. ;
Llewellyn, Danny J. ;
Dennis, Elizabeth S. .
PLANT PHYSIOLOGY, 2009, 149 (04) :1724-1738
[4]   Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding [J].
Collinge, M ;
Boller, T .
PLANT MOLECULAR BIOLOGY, 2001, 46 (05) :521-529
[5]  
DEPATER BS, 1992, PLANT J, V2, P837, DOI 10.1111/j.1365-313X.1992.00837.x
[6]   INHERITANCE OF ROOT CHARACTERS AND THEIR RELATIONS TO DROUGHT RESISTANCE IN RICE [J].
EKANAYAKE, IJ ;
OTOOLE, JC ;
GARRITY, DP ;
MASAJO, TM .
CROP SCIENCE, 1985, 25 (06) :927-933
[7]   Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice [J].
Fang, Yujie ;
You, Jun ;
Xie, Kabin ;
Xie, Weibo ;
Xiong, Lizhong .
MOLECULAR GENETICS AND GENOMICS, 2008, 280 (06) :547-563
[8]   A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J].
Fujita, M ;
Fujita, Y ;
Maruyama, K ;
Seki, M ;
Hiratsu, K ;
Ohme-Takagi, M ;
Tran, LSP ;
Yamaguchi-Shinozaki, K ;
Shinozaki, K .
PLANT JOURNAL, 2004, 39 (06) :863-876
[9]   Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J].
Garg, AK ;
Kim, JK ;
Owens, TG ;
Ranwala, AP ;
Do Choi, Y ;
Kochian, LV ;
Wu, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :15898-15903
[10]   AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development [J].
He, XJ ;
Mu, RL ;
Cao, WH ;
Zhang, ZG ;
Zhang, JS ;
Chen, SY .
PLANT JOURNAL, 2005, 44 (06) :903-916