Global optimization techniques for mixed complementarity problems

被引:33
作者
Kanzow, C [1 ]
机构
[1] Univ Hamburg, Inst Appl Math, D-20146 Hamburg, Germany
关键词
mixed complementarity problems; semismooth Newton method; global optimization; tunneling method; filled function method;
D O I
10.1023/A:1008331803982
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the theoretical and numerical properties of two global optimization techniques for the solution of mixed complementarity problems. More precisely, using a standard semismooth Newton-type method as a basic solver for complementarity problems, we describe how the performance of this method can be improved by incorporating two well-known global optimization algorithms, namely a tunneling and a filled function method. These methods are tested and compared with each other on a couple of very difficult test examples.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 31 条
[1]  
[Anonymous], THESIS U WISCONSIN M
[2]  
[Anonymous], 1995, Handbook of global optimization, Nonconvex Optimization and its Applications
[3]   QPCOMP: A quadratic programming based solver for mixed complementarity problems [J].
Billups, SC ;
Ferris, MC .
MATHEMATICAL PROGRAMMING, 1997, 76 (03) :533-562
[4]  
BILLUPS SC, 1998, HOMOTOPY BASED ALGOR
[5]  
BILLUPS SC, 1995, IMPROVING ROBUSTNESS
[6]  
Brooke A., 1998, GAMS USERS GUIDE
[7]  
CHEN B, 1997, 126 U HAMB I APPL MA
[8]   A semismooth equation approach to the solution of nonlinear complementarity problems [J].
DeLuca, T ;
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :407-439
[9]  
Dirkse S.P., 1995, Optimization Methods and Software, V5, P319, DOI DOI 10.1080/10556789508805619
[10]   A new merit function for nonlinear complementarity problems and a related algorithm [J].
Facchinei, F ;
Soares, J .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (01) :225-247