Time-resolved fluorescence microscopy

被引:438
作者
Suhling, K [1 ]
French, PMW
Phillips, D
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Photon Grp, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
关键词
D O I
10.1039/b412924p
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In fluorescence microscopy, the fluorescence emission can be characterised not only by intensity and position, but also by lifetime, polarization and wavelength. Fluorescence lifetime imaging (FLIM) can report on photophysical events that are difficult or impossible to observe by fluorescence intensity imaging, and time-resolved fluorescence anisotropy imaging (TR-FAIM) can measure the rotational mobility of a fluorophore in its environment. We compare different FLIM methods: a chief advantage of wide-field time-gating and phase modulation methods is the speed of acquisition whereas for time-correlated single photon counting (TCSPC) based confocal scanning it is accuracy in the fluorescence decay. FLIM has been used to image interactions between proteins such as receptor oligomerisation and to reveal protein phosphorylation by detecting fluorescence resonance energy transfer (FRET). In addition, FLIM can also probe the local environment of fluorophores, reporting, for example, on the local pH, refractive index, ion or oxygen concentration without the need for ratiometric measurements.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 148 条
[1]   High frame rate fluorescence lifetime imaging [J].
Agronskaia, AV ;
Tertoolen, L ;
Gerritsen, HC .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (14) :1655-1662
[2]  
Amos WB, 2000, PRACT APPROACH SER, V218, P67
[3]   TIME-RESOLVED AND WAVELENGTH-RESOLVED SPECTROSCOPY IN 2-PHOTON-EXCITED FLUORESCENCE MICROSCOPY [J].
ANDERSSONENGELS, S ;
ROKAHR, I ;
CARLSSON, J .
JOURNAL OF MICROSCOPY-OXFORD, 1994, 176 :195-203
[4]   Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell [J].
Bastiaens, PIH ;
Squire, A .
TRENDS IN CELL BIOLOGY, 1999, 9 (02) :48-52
[5]   Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: Fluorescent-labeled protein kinase C beta I [J].
Bastiaens, PIH ;
Jovin, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8407-8412
[6]   Observing proteins in their natural habitat: the living cell [J].
Bastiaens, PIH ;
Pepperkok, R .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (12) :631-637
[7]   Fluorescence lifetime imaging by time-correlated single-photon counting [J].
Becker, W ;
Bergmann, A ;
Hink, MA ;
König, K ;
Benndorf, K ;
Biskup, C .
MICROSCOPY RESEARCH AND TECHNIQUE, 2004, 63 (01) :58-66
[8]   NHE1 regulates the stratum corneum permeability barrier homeostasis - Microenvironment acidification assessed with fluorescence lifetime imaging [J].
Behne, MJ ;
Meyer, JW ;
Hanson, KM ;
Barry, NP ;
Murata, S ;
Crumrine, D ;
Clegg, RW ;
Gratton, E ;
Holleran, WM ;
Elias, PM ;
Mauro, TM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (49) :47399-47406
[9]   The spatial variation of the refractive index in biological cells [J].
Beuthan, J ;
Minet, O ;
Helfmann, J ;
Herrig, M ;
Muller, G .
PHYSICS IN MEDICINE AND BIOLOGY, 1996, 41 (03) :369-382
[10]   Confocal fluorescence spectroscopy and anisotropy imaging system [J].
Bigelow, CE ;
Conover, DL ;
Foster, TH .
OPTICS LETTERS, 2003, 28 (09) :695-697