The cytoplasmic tail of large conductance, voltage- and Ca2+-activated K+ (MaxiK) channel is necessary for its cell surface expression

被引:28
作者
Wang, SX [1 ]
Ikeda, M [1 ]
Guggino, WB [1 ]
机构
[1] Johns Hopkins Univ, Dept Physiol, Sch Med, Baltimore, MD 21205 USA
关键词
D O I
10.1074/jbc.M208411200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The large conductance, voltage- and Ca2+-activated K+ channel (MaxiK) is expressed in several renal segments and functions in cell volume regulation and flow-mediated K+ secretion. Previously, we cloned two MaxiK channel isoforms, named rbslo1 and rbslo2, from rabbit renal cells. rbslo1 has a 58-amino acid insertion after the S8 hydrophobic domain, whereas rbslo2 is truncated and cannot be activated. Here we use the sequence differences between the two variants to examine their plasma membrane processing. Plasma membrane localization of rbslo1 and 2 expressed in HEK293 cells was assayed by electrophysiology, immunocytochemistry, and biochemistry studies. Consistent with its functional silence, rbslo2 localized primarily within the cytoplasm, presumably in the endoplasmic reticulum and Golgi region. Coexpression with MaxiK beta subunits did not alter the cellular localization of either rbslo1 or rbslo2. When rbslo1 and 2 are cotransfected in non-polarized cells, they colocalized primarily within the cell with only rbslo1 detected at the plasma membrane. When transfected into polarized, medullary-thick ascending limb (mTAL) cells, rbslo1 is expressed at the apical membrane whereas the majority of rbslo2 localized throughout the cytoplasm. Given the high degree of similarity between the two isoforms, we conclude that the cytoplasmic tail of rbslo1 is important for the cell surface expression of MaxiK channels.
引用
收藏
页码:2713 / 2722
页数:10
相关论文
共 63 条
[1]   CALCIUM-ACTIVATED POTASSIUM CHANNELS EXPRESSED FROM CLONED COMPLEMENTARY DNAS [J].
ADELMAN, JP ;
SHEN, KZ ;
KAVANAUGH, MP ;
WARREN, RA ;
WU, YN ;
LAGRUTTA, A ;
BOND, CT ;
NORTH, RA .
NEURON, 1992, 9 (02) :209-216
[2]  
Benkusky NA, 2000, J BIOL CHEM, V275, P27712
[3]   Ca2+-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in Ca2+-dependent activation [J].
Bian, S ;
Favre, I ;
Moczydlowski, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) :4776-4781
[4]   VOLTAGE AND CA-2+-ACTIVATED K+ CHANNEL IN CULTURED EPITHELIAL-CELLS (MDCK) [J].
BOLIVAR, JJ ;
CEREIJIDO, M .
JOURNAL OF MEMBRANE BIOLOGY, 1987, 97 (01) :43-51
[5]   Apical sorting of a voltage- and Ca2+-activated K+ channel α-subunit in Madin-Darby canine kidney cells is independent of N-glycosylation [J].
Bravo-Zehnder, M ;
Orio, P ;
Norambuena, A ;
Wallner, M ;
Meera, P ;
Toro, L ;
Latorre, R ;
González, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (24) :13114-13119
[6]   REGULATION OF ARTERIAL TONE BY ACTIVATION OF CALCIUM-DEPENDENT POTASSIUM CHANNELS [J].
BRAYDEN, JE ;
NELSON, MT .
SCIENCE, 1992, 256 (5056) :532-535
[7]   Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4 [J].
Brenner, R ;
Jegla, TJ ;
Wickenden, A ;
Liu, Y ;
Aldrich, RW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (09) :6453-6461
[8]   SMALL AND MAXI K+ CHANNELS IN THE BASOLATERAL MEMBRANE OF ISOLATED CRYPTS FROM RAT DISTAL COLON - SINGLE-CHANNEL AND SLOW WHOLE-CELL RECORDINGS [J].
BURCKHARDT, BC ;
GOGELEIN, H .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1992, 420 (01) :54-60
[9]   MSLO, A COMPLEX MOUSE GENE ENCODING MAXI CALCIUM-ACTIVATED POTASSIUM CHANNELS [J].
BUTLER, A ;
TSUNODA, S ;
MCCOBB, DP ;
WEI, A ;
SALKOFF, L .
SCIENCE, 1993, 261 (5118) :221-224
[10]   Characterization of apical potassium channels induced in rat distal colon during potassium adaptation [J].
Butterfield, I ;
Warhurst, G ;
Jones, MN ;
Sandle, GI .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 501 (03) :537-547