Chaos synchronization of two coupled dynamos systems with unknown system parameters

被引:18
作者
Agiza, HN [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2004年 / 15卷 / 06期
关键词
coupled dynamos system; chaotic system; synchronization; adaptive control;
D O I
10.1142/S0129183104006303
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper addresses the synchronization problem of two coupled dynamos systems in the presence of unknown system parameters. Based on Lyapunov stability theory, an active control law is derived and activated to achieve the state synchronization of two identical coupled dynamos systems. By using Gerschgorin theorem, a simple generic criterion is derived for global synchronization of two coupled dynamos systems with a unidirectional linear error feedback coupling. This simple criterion is applicable to a large class of chaotic systems, where only a few algebraic inequalities are involved. Numerical simulations results are used to demonstrate the effectiveness of the proposed control methods.
引用
收藏
页码:873 / 883
页数:11
相关论文
共 18 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]   Controlling chaos for the dynamical system of coupled dynamos [J].
Agiza, HN .
CHAOS SOLITONS & FRACTALS, 2002, 13 (02) :341-352
[3]  
[Anonymous], 1986, NONLINEAR DYNAMICAL
[4]   Synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 1997, 8 (01) :51-58
[5]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[6]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[7]  
Chen G., 1998, CHAOS ORDER METHODOL
[8]  
Horn R. A., 1986, Matrix analysis
[9]   Conditions for impulsive synchronization of chaotic and hyperchaotic system [J].
Itoh, M ;
Yang, T ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (02) :551-560
[10]   A simple global synchronization criterion for coupled chaotic systems [J].
Jiang, GP ;
Tang, WKS ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2003, 15 (05) :925-935