A comonotonic image of independence for additive risk measures

被引:45
作者
Goovaerts, MJ
Kaas, R
Laeven, RJA
Tang, QH
机构
[1] Univ Amsterdam, Dept Quanititat Econ, NL-1018 WB Amsterdam, Netherlands
[2] Catholic Univ Louvain, Ctr Risk & Insurance Studies, B-3000 Louvain, Belgium
关键词
risk measures; additivity; exponential order; laplace transform order; Esscher transform; comonotonicity;
D O I
10.1016/j.insmatheco.2004.07.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents a new axiomatic characterization of risk measures that are additive for independent random variables. In contrast to previous work, we include an axiom that guarantees monotonicity of the risk measure. Furthermore, the axiom of additivity for independent random variables is related to an axiom of additivity for comonotonic random variables. The risk measure characterized can be regarded as a mixed exponential premium. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:581 / 594
页数:14
相关论文
共 20 条
[1]  
Buhlmann H., 1980, ASTIN BULL, V11, P52, DOI DOI 10.1017/S0515036100006619
[2]  
BUHLMANN H, 1985, ASTIN B, V15, P59
[3]  
Denneberg D., 1994, NONADDITIVE MEASURE
[4]   Laplace transform ordering of actuarial quantities [J].
Denuit, M .
INSURANCE MATHEMATICS & ECONOMICS, 2001, 29 (01) :83-102
[5]   The concept of comonotonicity in actuarial science and finance: theory [J].
Dhaene, J ;
Denuit, A ;
Goovaerts, MJ ;
Kaas, R ;
Vyncke, D .
INSURANCE MATHEMATICS & ECONOMICS, 2002, 31 (01) :3-33
[6]   The concept of comonotonicity in actuarial science and finance: applications [J].
Dhaene, J ;
Denuit, M ;
Goovaerts, MJ ;
Kaas, R ;
Vyncke, D .
INSURANCE MATHEMATICS & ECONOMICS, 2002, 31 (02) :133-161
[7]  
Feller W., 1971, An introduction to probability theory and its applications, VII
[8]  
Gerber H., 1974, ASTIN BULL, V7, P215, DOI [10.1017/S0515036100006061, DOI 10.1017/S0515036100006061]
[9]  
Gerber H.U., 1981, COMMENT ASTIN B, V12, P139
[10]  
Gerber H. U., 1980, Versicher ungsmathematiker, V3, P307