Molecular profiling of temporal lobe epilepsy: comparison of data from human tissue samples and animal models

被引:32
作者
Majores, M
Eils, J
Wiestler, OD
Becker, AJ
机构
[1] Univ Bonn, Med Ctr, Dept Neuropathol, D-53105 Bonn, Germany
[2] DKFZ, Heidelberg, Germany
关键词
microarray; species comparison; temporal lobe epilepsy;
D O I
10.1016/j.eplepsyres.2004.07.002
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The advent of gene chip technology and the era of functional genomics have initially been accompanied by huge anticipations to quickly unravel the molecular pathogenesis of multifactorial diseases. Expectations have, today, given way to some concerns about this non-hypothesis driven approach. However, the careful and controlled application of expression microarrays in concert with refined bioinformatic tools may provide novel insights in major disorders particularly of highly complex organs such as the central nervous system (CNS). Epilepsies are among the most frequent CNS disorders affecting approximately 1.5% of the population worldwide. In temporal lobe epilepsy (TLE), the seizure origin typically involves the hippocampal formation, a structure located in the mesial temporal lobe. Many TLE patients develop pharmacoresistance, i.e. seizures can no more be controlled by antiepileptic drugs. In order to achieve seizure control, surgical removal of the epileptogenic focus has been established as successful therapeutic strategy. Hippocampal biopsy tissue of pharmacoresistant TLE patients represents an excellent substrate to analyze molecular mechanisms related to structural and cellular reorganization in epilepsy. The complexity of alterations in TLE hippocampi suggests numerous genes and signaling cascades to be involved in the pathogenesis. By microarrays, genome wide expression profiles can be constituted from TLE tissues. However, hippocampi of pharmacoresistant TLE patients represent an advanced stage of the disease. Early stages of epilepsy development are not available for functional genome analysis in humans. Animal models of TLE appear particularly helpful to study molecular mechanisms of highly dynamic processes such as the development of hyperexcitability and pharmacoresistance. In this review, we summarize recent data of gene expression profiles in human and experimental TILE and discuss the relevance of novel tools for bioinformatic analysis and data mining. (C) 2004 Elsevier B.V All rights reserved.
引用
收藏
页码:173 / 178
页数:6
相关论文
共 24 条
[1]  
Becker AJ, 2002, PROG BRAIN RES, V135, P161
[2]   Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy [J].
Becker, AJ ;
Chen, J ;
Zien, A ;
Sochivko, D ;
Normann, S ;
Schramm, J ;
Elger, CE ;
Wiestler, OD ;
Blümcke, I .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2003, 18 (10) :2792-2802
[3]   Transcriptional profiling in human epilepsy:: expression array and single cell real-time qRT-PCR analysis reveal distinct cellular gene regulation [J].
Becker, AJ ;
Chen, J ;
Sebastian, PS ;
Normann, S ;
Beck, H ;
Elger, CE ;
Wiestler, OD ;
Blümcke, I .
NEUROREPORT, 2002, 13 (10) :1327-1333
[4]   Kainate, a double agent that generates seizures: two decades of progress [J].
Ben-Ari, Y ;
Cossart, R .
TRENDS IN NEUROSCIENCES, 2000, 23 (11) :580-587
[5]  
Blümcke I, 2002, BRAIN PATHOL, V12, P199
[6]   Molecular neuropathology of human mesial temporal lobe epilepsy [J].
Blümcke, I ;
Beck, H ;
Lie, AA ;
Wiestler, OD .
EPILEPSY RESEARCH, 1999, 36 (2-3) :205-223
[7]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[8]   Exploring the new world of the genome with DNA microarrays [J].
Brown, PO ;
Botstein, D .
NATURE GENETICS, 1999, 21 (Suppl 1) :33-37
[9]   LONG-TERM EFFECTS OF PILOCARPINE IN RATS - STRUCTURAL DAMAGE OF THE BRAIN TRIGGERS KINDLING AND SPONTANEOUS RECURRENT SEIZURES [J].
CAVALHEIRO, EA ;
LEITE, JP ;
BORTOLOTTO, ZA ;
TURSKI, WA ;
IKONOMIDOU, C ;
TURSKI, L .
EPILEPSIA, 1991, 32 (06) :778-782
[10]  
Elliott RC, 2003, J NEUROSCI, V23, P2218