Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras

被引:71
作者
Cipriani, F [1 ]
机构
[1] UNIV NOTTINGHAM,DEPT MATH,NOTTINGHAM NG7 2RD,ENGLAND
关键词
D O I
10.1006/jfan.1996.3063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize w*-continuous, Markovian semigroups on a von Neumann algebra M, which are phi(o)-symmetric w.r.t. a faithful, normal state phi(o) in M*+, in terms of quadratic forms on the Hilbert space H of a standard form (M, H, P, J). We characterize also symmetric, strongly continuous, contraction semigroups on a real Hilbert space H which leave invariant a closed, convex set in H, in terms of a contraction property of the associated quadratic forms. We apply the results to give criteria of essential selfadjointness for quadratic form sums and to give a characterization of w*-continuous, Markovian semigroups on,tt, which commute with the modular automorphism group sigma(t)(phi o). (C) 1997 Academic Press.
引用
收藏
页码:259 / 300
页数:42
相关论文
共 63 条
[1]  
Accardi L., 1982, Publ. Rest. Inst. Math. Sct., V18, P97
[2]   DIRICHLET FORMS AND MARKOV SEMIGROUPS ON C-STAR-ALGEBRAS [J].
ALBEVERIO, S ;
HOEGHKROHN, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 56 (02) :173-187
[3]   FUNDAMENTAL SOLUTION OF THE HEAT AND SCHRODINGER-EQUATIONS WITH POINT INTERACTION [J].
ALBEVERIO, S ;
BRZEZNIAK, Z ;
DABROWSKI, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (01) :220-254
[4]  
[Anonymous], LECT NOTES MATH
[5]  
[Anonymous], 1984, LECT NOTES MATH
[6]  
[Anonymous], 1993, QUANTUM PROBABILITY, DOI DOI 10.1007/978-3-662-21558-6
[8]  
Araki H., 1982, PUBL RES I MATH SCI, V18, P339, DOI 10.2977/prims/1195183577
[9]  
Bergh J., 1976, GRUNDLEHREN MATH WIS, V223
[10]   DIRICHLET SPACES [J].
BEURLING, A ;
DENY, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1959, 45 (02) :208-215