Statistical analysis of nonparametric transfer function estimates

被引:29
作者
Guillaume, P [1 ]
Kollar, I [1 ]
Pintelon, R [1 ]
机构
[1] TECH UNIV BUDAPEST, DEPT MEASUREMENT & INSTRUMENTAT ENGN, BUDAPEST, HUNGARY
关键词
D O I
10.1109/19.492794
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Empirical Transfer Function Estimate (ETFE) is the ratio of the Fourier transforms of the output and input signals of a system, It works well when the input signal is deterministic and exactly known. However, when the input signal is random, or it can only be observed with an observation error, the quality of the ETFE deteriorates, Its variance can be infinite even for large signal-to-noise ratios. This is not well known. This paper establishes and analyzes a mathematical model of the ETFE with noisy input signals. It explains the cause of the large variance and suggests modifications which eliminate the above problems.
引用
收藏
页码:594 / 600
页数:7
相关论文
共 15 条
[1]   IDENTIFICATION OF SCALAR ERRORS-IN-VARIABLES MODELS WITH DYNAMICS [J].
ANDERSON, BDO .
AUTOMATICA, 1985, 21 (06) :709-716
[2]  
[Anonymous], 1981, Time series data analysis and theory, DOI 10.1201/b15288-24
[3]  
[Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
[4]  
Billingsley P., 1985, PROBABILITY MEASURE
[5]  
BROERSEN PMT, 1994, P 10 IEEE INSTR MEAS, V3, P1377
[6]  
Fuller W. A., 2009, Measurement error models
[8]   NONPARAMETRIC FREQUENCY-RESPONSE FUNCTION ESTIMATORS BASED ON NONLINEAR AVERAGING TECHNIQUES [J].
GUILLAUME, P ;
PINTELON, R ;
SCHOUKENS, J .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1992, 41 (06) :739-746
[9]  
Guillaume P, 1992, THESIS VRIJE U BRUSS
[10]  
KENDALL MG, 1979, ADV THEORY STATISTIC, V2