Important role for Rac1 in regulating reactive oxygen species generation and pulmonary arterial smooth muscle cell growth

被引:31
作者
Patil, S
Bunderson, M
Wilham, J
Black, SM
机构
[1] Northwestern Univ, Dept Pediat, Chicago, IL 60611 USA
[2] Univ Montana, Int Heart Inst Montana, Missoula, MT 59802 USA
[3] Univ Montana, Dept Biomed & Pharmaceut Sci, Missoula, MT 59802 USA
关键词
vascular reduced nicotinamide adenine dinucleotide phosphate oxidase;
D O I
10.1152/ajplung.00383.2003
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Vascular NADPH oxidases have been shown to be a major source of reactive oxygen species (ROS). Recent studies have also implicated ROS in the proliferation of vascular smooth muscle cells. However, the components required for activation of the NADPH oxidase complex have not been clearly elucidated. Here we demonstrate that ROS generation in ovine pulmonary arterial smooth muscle cells (PASMCs) requires the activation of Rac1, implicating this protein as an important subunit of the NADPH oxidase complex. Our results, using a geranylgeranyl transferase inhibitor (GGTI-287), demonstrated a dose-dependent inhibition of Rac1 activity and ROS production. This was associated with an inhibition of PASMC proliferation with an arrest at G(2)/M. The inhibition of Rac1 by GGTI-287 led us to more specifically target Rac1 to investigate its role in the generation of ROS and cellular proliferation. To accomplish this, we utilized a dominant negative Rac1 (N17Rac1) and a constitutively active Rac1 (V12Rac1). These two forms of Rac1 were transiently expressed in PASMCs using adenovirus-mediated gene transfer. N17Rac1 expression resulted in decreased cellular Rac1 activity, whereas V12Rac1 infection showed increased activity. Compared with controls, the V12Rac1-expressing cells had higher levels of ROS production and increased proliferation, whereas the N17Rac1-expressing cells had decreased ROS generation and proliferation and cell cycle arrest at G(2)/M. However, the inhibition of cell growth produced by N17Rac1 overexpression could be overcome if cells were co-incubated with the Cu,Zn superoxide dismutase inhibitor DETC. These results indicate the importance of Rac1 in ROS generation and proliferation of vascular smooth muscle cells.
引用
收藏
页码:L1314 / L1322
页数:9
相关论文
共 42 条
[1]   ACTIVATION OF THE NADPH OXIDASE INVOLVES THE SMALL GTP-BINDING PROTEIN P21RAC1 [J].
ABO, A ;
PICK, E ;
HALL, A ;
TOTTY, N ;
TEAHAN, CG ;
SEGAL, AW .
NATURE, 1991, 353 (6345) :668-670
[2]   p21WAF1/CIP1 is upregulated by the geranylgeranyltransferase I inhibitor GGTI-298 through a transforming growth factor β- and Sp1-responsive element:: Involvement of the small GTPase RhoA [J].
Adnane, J ;
Bizouarn, FA ;
Qian, YM ;
Hamilton, AD ;
Sebti, SM .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (12) :6962-6970
[3]   Investigation into the sources of superoxide in human blood vessels - Angiotensin II increases superoxide production in human internal mammary arteries [J].
Berry, C ;
Hamilton, CA ;
Brosnan, J ;
Magill, FG ;
Berg, GA ;
McMurray, JJV ;
Dominiczak, AF .
CIRCULATION, 2000, 101 (18) :2206-2212
[4]   Current molecular models for NADPH oxidase regulation by Rac GTPase [J].
Bokoch, GM ;
Diebold, BA .
BLOOD, 2002, 100 (08) :2692-2696
[5]   Increased superoxide generation is associated with pulmonary hypertension in fetal lambs - A role for NADPH oxidase [J].
Brennan, LA ;
Steinhorn, RH ;
Wedgwood, S ;
Mata-Greenwood, E ;
Roark, EA ;
Russell, JA ;
Black, SM .
CIRCULATION RESEARCH, 2003, 92 (06) :683-691
[6]  
CASEY PJ, 1992, J LIPID RES, V33, P1731
[7]   THE USE OF ATP BIOLUMINESCENCE AS A MEASURE OF CELL-PROLIFERATION AND CYTOTOXICITY [J].
CROUCH, SPM ;
KOZLOWSKI, R ;
SLATER, KJ ;
FLETCHER, J .
JOURNAL OF IMMUNOLOGICAL METHODS, 1993, 160 (01) :81-88
[8]   Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds [J].
Diatchuk, V ;
Lotan, O ;
Koshkin, V ;
Wikstroem, P ;
Pick, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (20) :13292-13301
[9]   The Rac target NADPH oxidase p67(phox) interacts preferentially with Rac2 rather than Rac1 [J].
Dorseuil, O ;
Reibel, L ;
Bokoch, GM ;
Camonis, J ;
Gacon, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (01) :83-88
[10]   ANGIOTENSIN-II STIMULATES NADH AND NADPH OXIDASE ACTIVITY IN CULTURED VASCULAR SMOOTH-MUSCLE CELLS [J].
GRIENDLING, KK ;
MINIERI, CA ;
OLLERENSHAW, JD ;
ALEXANDER, RW .
CIRCULATION RESEARCH, 1994, 74 (06) :1141-1148