On an efficient use of gradient information for accelerating interval global optimization algorithms

被引:12
作者
Martínez, JA
Casado, LG
García, I
Sergeyev, YD
Tóth, B
机构
[1] Univ Almeria, Comp Architecture & Elect Dept, Almeria 04120, Spain
[2] Univ Calabria, DEIS, I-87030 Commenda Di Rende, Italy
[3] Univ Nizhni Novgorod, Nizhnii Novgorod, Russia
[4] Univ Szeged, Dept Appl Informat, H-6701 Szeged, Hungary
关键词
global optimization; interval arithmetic; branch-and-bound;
D O I
10.1023/B:NUMA.0000049456.81410.fc
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes and evaluates an efficient n-dimensional global optimization algorithm. It is a natural n-dimensional extension of the algorithm of Casado et al. [ 1]. This algorithm takes advantage of all available information to estimate better bounds of the function. Numerical comparison made on a wide set of multiextremal test functions has shown that on average the new algorithm works faster than a traditional interval analysis global optimization method.
引用
收藏
页码:61 / 69
页数:9
相关论文
共 14 条
[1]  
CASADO LG, 2003, J GLOBAL OPTIM, V25, P1
[2]   Subdivision direction selection in interval methods for global optimization [J].
Csendes, T ;
Ratz, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :922-938
[3]  
Dixon L., 1978, GLOBAL OPTIMIZATION, V2
[4]  
HAMMER R, 1995, C TOOLBOX VERIFIED C, V1
[5]  
HENRIKSEN T, 1992, 9210 TU DENM I NUM A
[6]  
Kearfott R.B., 1996, RIGOROUS GLOBAL SEAR
[7]  
Moore R.E., 1966, INTERVAL ANAL
[8]  
Neumaier A., 1990, INTERVAL METHODS SYS
[9]  
Ratschek H., 1988, New computer methods for global optimization
[10]   ON THE SELECTION OF SUBDIVISION DIRECTIONS IN INTERVAL BRANCH-AND-BOUND METHODS FOR GLOBAL OPTIMIZATION [J].
RATZ, D ;
CSENDES, T .
JOURNAL OF GLOBAL OPTIMIZATION, 1995, 7 (02) :183-207