Adsorption of leucine-rich amelogenin protein on hydroxyapatite (001) surface through -COO- claws

被引:78
作者
Chen, Xin [1 ]
Wang, Qi [1 ]
Shen, Jiawei [1 ]
Pan, Haihua [1 ]
Wu, Tao [1 ]
机构
[1] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China
关键词
D O I
10.1021/jp0646630
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Amelogenin is the main component of the organic matrix necessary to the formation of tooth enamel by directing the hydroxyapatite (HAP) growth. However, the detailed mechanism of adsorption between amelogenin and HAP is still not clear. In this report, simulations of the dynamic behavior of six different orientations of leucine-rich amelogenin protein (LRAP), the amelogenin splice variant, on a fixed hydrophilic HAP surface (001) were performed. Energy minimization, molecular dynamics (MD), and steered molecular dynamics (SMD) simulations were integrated in carrying this study. The results are highly consistent with the previous experimental findings. It was confirmed that the carboxyl groups contributed mainly to the adsorption of LRAP on the HAP (001) surface. Moreover, it was found that the -COO- claw of LRAP grasps the calcium ion with its two oxygen atoms in a special triangle form. This interaction form can resist external forces and is the key factor of the adsorption between LRAP and HAP.
引用
收藏
页码:1284 / 1290
页数:7
相关论文
共 51 条
[1]   Molecular simulation to characterize the adsorption behavior of a fibrinogen γ-chain fragment [J].
Agashe, M ;
Raut, V ;
Stuart, SJ ;
Latour, RA .
LANGMUIR, 2005, 21 (03) :1103-1117
[2]   Nanostructure processing of hydroxyapatite-based bioceramics [J].
Ahn, ES ;
Gleason, NJ ;
Nakahira, A ;
Ying, JY .
NANO LETTERS, 2001, 1 (03) :149-153
[3]  
Berendsen H. J. C., 1981, INTERMOLECULAR FORCE, P331, DOI [DOI 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658-1_21]
[4]   Analysis of hydroxyapatite surface coverage by amelogenin nanospheres following the Langmuir model for protein adsorption [J].
Bouropoulos, N ;
Moradian-Oldak, J .
CALCIFIED TISSUE INTERNATIONAL, 2003, 72 (05) :599-603
[5]   NPS@:: Network Protein Sequence Analysis [J].
Combet, C ;
Blanchet, C ;
Geourjon, C ;
Deléage, G .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (03) :147-150
[6]   Supramolecular assembly of amelogenin nanospheres into birefringent microribbons [J].
Du, C ;
Falini, G ;
Fermani, S ;
Abbott, C ;
Moradian-Oldak, J .
SCIENCE, 2005, 307 (5714) :1450-1454
[7]   Growth of polar crystal surfaces on ionized organic substrates [J].
Duffy, DM ;
Harding, JH .
LANGMUIR, 2004, 20 (18) :7637-7642
[8]   EVIDENCE FOR AMELOGENIN NANOSPHERES AS FUNCTIONAL COMPONENTS OF SECRETORY-STAGE ENAMEL MATRIX [J].
FINCHAM, AG ;
MORADIANOLDAK, J ;
DIEKWISCH, TGH ;
LYARUU, DM ;
WRIGHT, JT ;
BRINGAS, P ;
SLAVKIN, HC .
JOURNAL OF STRUCTURAL BIOLOGY, 1995, 115 (01) :50-59
[9]   Simulation of DNA-nanotube interactions [J].
Gao, HJ ;
Kong, Y .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2004, 34 :123-150
[10]  
Geourjon C, 1995, COMPUT APPL BIOSCI, V11, P681