Phosphorylation-Mediated Negative Regulation of RIG-I Antiviral Activity

被引:109
作者
Gack, Michaela U. [1 ,2 ]
Nistal-Villan, Estanislao [3 ]
Inn, Kyung-Soo [2 ]
Garcia-Sastre, Adolfo [3 ,4 ,5 ]
Jung, Jae U. [2 ]
机构
[1] Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, New England Primate Res Ctr, Southborough, MA 01772 USA
[2] Univ So Calif, Keck Sch Med, Dept Mol Microbiol & Immunol, Los Angeles, CA 90033 USA
[3] Mt Sinai Sch Med, Dept Microbiol, New York, NY 10029 USA
[4] Mt Sinai Sch Med, Dept Med, Div Infect Dis, New York, NY 10029 USA
[5] Mt Sinai Sch Med, Global Hlth & Emerging Pathogens Inst, New York, NY 10029 USA
关键词
E3 UBIQUITIN LIGASE; INNATE IMMUNITY; ADAPTER PROTEIN; RNA HELICASE; ACTIVATION; PATHWAY; INDUCTION; RESPONSES; VIRUS; RECOGNITION;
D O I
10.1128/JVI.02241-09
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Recognition of invading viruses by the host is elicited by cellular sensors which trigger signaling cascades that lead to type I interferon (IFN) gene expression. Retinoic acid-inducible gene I (RIG-I) has emerged as a key receptor for the detection of viral RNA in the cytosol, inducing IFN-mediated innate immune responses to limit viral replication through its interaction with MAVS (also called IPS-1, CARDIF, or VISA). Upon the recognition of viral RNA, the Lys-172 residue of RIG-I undergoes ubiquitination induced by tripartite motif protein 25 (TRIM25), an essential protein for antiviral signal transduction. Here we demonstrate that phosphorylation represents another regulatory mechanism for RIG-I-mediated antiviral activity. Using protein purification and mass spectrometry analysis, we identified three phosphorylation sites in the amino-terminal caspase recruitment domains (CARDs) of RIG-I. One of these residues, Thr-170, is located in close proximity to Lys-172, and we speculated that its phosphorylation may affect Lys-172 ubiquitination and functional activation of RIG-I. Indeed, a RIG-I mutant carrying a phosphomimetic Glu residue in place of Thr-170 loses TRIM25 binding, Lys-172 ubiquitination, MAVS binding, and downstream signaling ability. This suggests that phosphorylation of RIG-I at Thr-170 inhibits RIG-I-mediated antiviral signal transduction. Immunoblot analysis with a phospho-specific antibody showed that the phosphorylation of the RIG-I Thr-170 residue is present under normal conditions but rapidly declines upon viral infection. Our results indicate that Thr-170 phosphorylation and TRIM25-mediated Lys-172 ubiquitination of RIG-I functionally antagonize each other. While Thr-170 phosphorylation keeps RIG-I latent, Lys-172 ubiquitination enables RIG-I to form a stable complex with MAVS, thereby inducing IFN signal transduction.
引用
收藏
页码:3220 / 3229
页数:10
相关论文
共 32 条
[1]   RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate [J].
Ablasser, Andrea ;
Bauernfeind, Franz ;
Hartmann, Gunther ;
Latz, Eicke ;
Fitzgerald, Katherine A. ;
Hornung, Veit .
NATURE IMMUNOLOGY, 2009, 10 (10) :1065-U40
[2]   Mass spectrometry in proteomics [J].
Aebersold, R ;
Goodlett, DR .
CHEMICAL REVIEWS, 2001, 101 (02) :269-295
[3]   Pathogen recognition and innate immunity [J].
Akira, S ;
Uematsu, S ;
Takeuchi, O .
CELL, 2006, 124 (04) :783-801
[4]   The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter [J].
Andrejeva, J ;
Childs, KS ;
Young, DF ;
Carlos, TS ;
Stock, N ;
Goodbourn, S ;
Randall, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (49) :17264-17269
[5]   Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125 [J].
Arimoto, Kei-ichiro ;
Takahashi, Hitoshi ;
Hishiki, Takayuki ;
Konishi, Hicleyuki ;
Fujita, Takashi ;
Shimotohno, Kunitada .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (18) :7500-7505
[6]   The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3 [J].
Basler, CF ;
Mikulasova, A ;
Martinez-Sobrido, L ;
Paragas, J ;
Mühlberger, E ;
Bray, M ;
Klenk, HD ;
Palese, P ;
García-Sastre, A .
JOURNAL OF VIROLOGY, 2003, 77 (14) :7945-7956
[7]   RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons through the RIG-I Pathway [J].
Chiu, Yu-Hsin ;
MacMillan, John B. ;
Chen, Zhijian J. .
CELL, 2009, 138 (03) :576-591
[8]   The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I [J].
Cui, Sheng ;
Eisenaecher, Katharina ;
Kirchhofer, Axel ;
Brzozka, Krzysztof ;
Lammens, Alfred ;
Lammens, Katja ;
Fujita, Takashi ;
Conzelmann, Karl-Klaus ;
Krug, Anne ;
Hopfner, Karl-Peter .
MOLECULAR CELL, 2008, 29 (02) :169-179
[9]   Roles of RIG-1 N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction [J].
Gack, Michaela U. ;
Kirchhofer, Axel ;
Shin, Young C. ;
Inn, Kyung-Soo ;
Liang, Chengyu ;
Cui, Sheng ;
Myong, Sua ;
Ha, Taekjip ;
Hopfner, Karl-Peter ;
Jung, Jae U. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (43) :16743-16748
[10]   TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity [J].
Gack, Michaela U. ;
Shin, Young C. ;
Joo, Chul-Hyun ;
Urano, Tomohiko ;
Liang, Chengyu ;
Sun, Lijun ;
Takeuchi, Osamu ;
Akira, Shizuo ;
Chen, Zhijian ;
Inoue, Satoshi ;
Jung, Jae U. .
NATURE, 2007, 446 (7138) :916-U2