Multiplicative ergodicity and large deviations for an irreducible Markov chain

被引:65
作者
Balaji, S [1 ]
Meyn, SP
机构
[1] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[4] Indian Inst Sci, Bangalore 560012, Karnataka, India
[5] Technion Israel Inst Technol, IL-32000 Haifa, Israel
基金
美国国家科学基金会;
关键词
Markov chain; ergodic theory; harmonic functions; large deviations;
D O I
10.1016/S0304-4149(00)00032-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper examines multiplicative ergodic theorems and the related multiplicative Poisson equation for an irreducible Markov chain on a countable state space. The partial products are considered for a real-valued function on the state space. If the function of interest satisfies a monotone condition, or is dominated by such a function, then. (i) The mean normalized products converge geometrically quickly to a finite limiting value. (ii) The multiplicative Poisson equation admits a solution. (iii) Large deviation bounds are obtainable for the empirical measures. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 144
页数:22
相关论文
共 18 条
[1]  
[Anonymous], CAMBRIDGE STUDIES AD
[2]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[3]  
[Anonymous], 1991, PITMAN RES NOTES MAT
[4]  
Arnold L., 1987, STOCHASTIC DIFFERENT, P117
[5]  
BALAJI S, 1999, 38 IEEE C DEC CONTR
[6]  
BOLTHAUSEN E, 1995, ANN PROBAB, V23, P286
[7]  
BORKAR VS, 1999, UNPUB MATH OPER RES
[8]  
Dembo A., 1993, Large deviations techniques and applications
[9]  
Glynn PW, 1996, ANN PROBAB, V24, P916
[10]   SUBADDITIVE ERGODIC THEORY [J].
KINGMAN, JFC .
ANNALS OF PROBABILITY, 1973, 1 (06) :883-899