Role of Electrostatics in Modulating Hydrophobic Interactions and Barriers to Hydrophobic Assembly

被引:11
作者
Bauer, Brad A. [1 ]
Patel, Sandeep [1 ]
机构
[1] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA
基金
美国国家卫生研究院;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; CHARGE FORCE-FIELDS; MONTE-CARLO SIMULATIONS; HYDROGEN-BOND DYNAMICS; FREE-ENERGY; TEMPERATURE-DEPENDENCE; POLARIZABLE MODEL; HEAT-CAPACITY; WATER; INTERFACES;
D O I
10.1021/jp101995d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrophobic effects continue to be an active area of research due to implications for a wide range of physicochemical phenomena. Molecular dynamics simulations have been used extensively in the study of such effects using various water potential models, with few studies addressing the differences between models. In particular, studies considering the explicit treatment of water polarizability are underrepresented in the literature. We present results from molecular dynamics simulations that systematically compare the dependence of large-scale hydrophobic effects on the water model. We consider three common nonpolarizable models (SPC/E, TIP3P, and TIP4P) and two common polarizable models (TIP4P-FQ and SWM4-NDP). Results highlight the similarities and differences of the different water models in the vicinity of two large hydrophobic plates. In particular, profiles of average density, density fluctuations, orientation, and hydrogen bonding show only minor differences among the water models studied. However, the potential of mean force for the hydrophobe dimerization is significantly reduced in the polarizable water systems. TIP4P-FQ shows the deepest minimum of approximately -54(+/-3) kcal/mol compared to -40(+/-3), -40(+/-2), -42(+/-3), and -45(+/-5) kcal/mol for TIP4P, TEMP, SPC/E, and SWM4-NDP (all relative to the dissociated state). We discuss the relationship between hydrophobic association and the strength of water-water interactions in the liquid phase. Results suggest that models treating polarizability (both implicitly and explicitly) influence a stronger driving force toward hydrophobic assembly. Implications of these results, as well as prospectives on future work, are discussed.
引用
收藏
页码:8107 / 8117
页数:11
相关论文
共 110 条
[1]   Determination of electrostatic parameters for a polarizable force field based on the classical Drude oscillator [J].
Anisimov, VM ;
Lamoureux, G ;
Vorobyov, IV ;
Huang, N ;
Roux, B ;
MacKerell, AD .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2005, 1 (01) :153-168
[2]  
ANTHAWALE MV, 2007, P NATL ACAD SCI USA, V104, P733
[3]   ATOM DIPOLE INTERACTION MODEL FOR MOLECULAR POLARIZABILITY - APPLICATION TO POLYATOMIC-MOLECULES AND DETERMINATION OF ATOM POLARIZABILITIES [J].
APPLEQUIST, J ;
CARL, JR ;
FUNG, KK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1972, 94 (09) :2952-+
[4]   Assessing the thermodynamic signatures of hydrophobic hydration for several common water models [J].
Ashbaugh, Henry S. ;
Collett, Nicholas J. ;
Hatch, Harold W. ;
Staton, Jennifer A. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (12)
[5]   Electron distribution in water [J].
Badyal, YS ;
Saboungi, ML ;
Price, DL ;
Shastri, SD ;
Haeffner, DR ;
Soper, AK .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (21) :9206-9208
[7]   Incorporating Phase-Dependent Polarizability in Nonadditive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface [J].
Bauer, Brad A. ;
Warren, G. Lee ;
Patel, Sandeep .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (02) :359-373
[8]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[9]   Single-file transport of water molecules through a carbon nanotube [J].
Berezhkovskii, A ;
Hummer, G .
PHYSICAL REVIEW LETTERS, 2002, 89 (06) :064503/1-064503/4