Existence for a two-dimensional, unsteady fluid-structure interaction problem

被引:19
作者
Grandmont, C
Maday, Y
机构
[1] Univ Paris 06, Anal Numer Lab, F-75251 Paris 05, France
[2] Univ Paris Sud, Lab ASCI, F-91405 Orsay, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 04期
关键词
D O I
10.1016/S0764-4442(97)89804-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the well-posedness of a steady state problem: we consider a two-dimensional viscous incompressible flow which is modeled by the Navier-Stokes equations. The structure is a rigid moving disc. The fluid domain depends on time and is defined by the Position of the structure, itself resulting from a stress distribution coming from the fluid The problem is then nonlinear and the equations rye deal with are coupled. We prove its local solvability in time though two fixed point procedures. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:525 / 530
页数:6
相关论文
共 7 条
[1]  
ALLAIN G, 1983, THESIS U P M CURIE P
[3]  
GRANDMONT C, 1998, THESIS U P M CURIE P
[4]  
LIONS JL, 1968, AUX LIMITES NONHOMOG, V2
[5]  
LIONS JL, 1968, AUX LIMITES NONHOMOG, V1
[6]  
SOLONNIKOV VA, 1977, MATH USSR IZVESTIYA, V11
[7]  
SOLONNIKOV VA, 1988, MATH USSR IZVESTIYA, V31