Nuclear factor-κB and mitogen-activated protein kinases mediate nitric oxide-enhanced transcriptional expression of interferon-β

被引:27
作者
Jacobs, AT [1 ]
Ignarro, LJ [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA
关键词
D O I
10.1074/jbc.M211642200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitogen-activated protein (AL4P) kinase and nuclear factor-kappaB (NF-kappaB) activation are critical for initiating the transcriptional expression of cytokines, cell adhesion molecules, and other factors in the macrophage immune response. Nitric oxide (NO), an endogenous free radical, is a product of macrophages that mediates inflammatory and cytotoxic processes in the immune system. Here we report the effects of NO on MAP kinase signaling and NF-kappaB activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and correlate these effects to the induction target genes, including interferon-beta (IFN-beta) and IkappaB-alpha. LPS alone induced a rapid phosphorylation of the stress-activated MAP kinases: c-Jun N-terminal kinase (JNK) and p38. Simultaneous treatment with LPS and the NO donor, diethylamine NONOate (DEA/NO), enhanced and prolonged JNK and p38 phosphorylation. Similarly, DEA/NO prolonged the LPS-induced degradation of the NF-kappaB inhibitory subunit, IkappaB-alpha, despite an increase in IkappaB-alpha mRNA levels. Whereas DEA/NO alone was sufficient to induce JNK and p38 phosphorylation, it was not sufficient to cause IkappaB-a degradation. The enhancement of IkappaB-alpha degradation by DEA/NO correlated with an increase in the nuclear levels of the p50 and p65 subunits and DNA-binding activity determined by electrophoretic mobility shift assay. DEA/NO and an additional NO donor, MAHMA/NO, are further demonstrated to enhance the transcriptional expression of the IFN-beta gene. The results suggest a role for NO in enhancing and propagating inflammatory conditions and the immune response.
引用
收藏
页码:8018 / 8027
页数:10
相关论文
共 70 条
[1]   Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-γ [J].
Ajizian, SJ ;
English, BK ;
Meals, EA .
JOURNAL OF INFECTIOUS DISEASES, 1999, 179 (04) :939-944
[2]   STIMULATION-DEPENDENT I-KAPPA-B-ALPHA PHOSPHORYLATION MARKS THE NF-KAPPA-B INHIBITOR FOR DEGRADATION VIA THE UBIQUITIN-PROTEASOME PATHWAY [J].
ALKALAY, I ;
YARON, A ;
HATZUBAI, A ;
ORIAN, A ;
CIECHANOVER, A ;
BEN-NERIAH, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10599-10603
[3]  
ArenzanaSeisdedos F, 1997, J CELL SCI, V110, P369
[4]   I-KAPPA-B INTERACTS WITH THE NUCLEAR-LOCALIZATION SEQUENCES OF THE SUBUNITS OF NF-KAPPA-B - A MECHANISM FOR CYTOPLASMIC RETENTION [J].
BEG, AA ;
RUBEN, SM ;
SCHEINMAN, RI ;
HASKILL, S ;
ROSEN, CA ;
BALDWIN, AS .
GENES & DEVELOPMENT, 1992, 6 (10) :1899-1913
[5]   p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells -: Roles of nuclear factors, nuclear factor κB, cAMP response element-binding protein, ccaat/enhancer-binding protein-β, and activating transcription factor-2 [J].
Bhat, NR ;
Feinstein, DL ;
Shen, Q ;
Bhat, AN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (33) :29584-29592
[6]   Nitric oxide and the regulation of gene expression [J].
Bogdan, C .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :66-75
[7]   CENTRAL OF I-KAPPA-B-ALPHA PROTEOLYSIS BY SITE-SPECIFIC, SIGNAL-INDUCED PHOSPHORYLATION [J].
BROWN, K ;
GERSTBERGER, S ;
CARLSON, L ;
FRANZOSO, G ;
SIEBENLIST, U .
SCIENCE, 1995, 267 (5203) :1485-1488
[8]   NF-κB family of transcription factors:: Central regulators of innate and adaptive immune functions [J].
Caamaño, J ;
Hunter, CA .
CLINICAL MICROBIOLOGY REVIEWS, 2002, 15 (03) :414-+
[9]   Nuclear factor kB is activated by arachidonic acid but not by eicosapentaenoic acid [J].
Camandola, S ;
Leonarduzzi, G ;
Musso, T ;
Varesio, L ;
Carini, R ;
Scavazza, A ;
Chiarpotto, E ;
Baeuerle, PA ;
Poli, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 229 (02) :643-647
[10]   The p38 mitogen-activated protein kinase is required for NF-κB-dependent gene expression -: The role of TATA-binding protein (TBP) [J].
Carter, AB ;
Knudtson, KL ;
Monick, MM ;
Hunninghake, GW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (43) :30858-30863