Range-separated density-functional theory with random phase approximation applied to noncovalent intermolecular interactions

被引:118
作者
Zhu, Wuming [1 ,2 ]
Toulouse, Julien [1 ,2 ]
Savin, Andreas [1 ,2 ]
Angyan, Janos G. [3 ]
机构
[1] Univ Paris 06, Chim Theor Lab, UPMC, F-75005 Paris, France
[2] CNRS, F-75005 Paris, France
[3] Nancy Univ, CRM2, Inst Jean Barriol, F-54506 Vandoeuvre Les Nancy, France
关键词
CONSTRAINT SATISFACTION; CORRELATION-ENERGY; BASE-PAIRS; GAS; COMPLEXES; ATOMS;
D O I
10.1063/1.3431616
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Range-separated methods combining a short-range density functional with long-range random phase approximations (RPAs) with or without exchange response kernel are tested on rare-gas dimers and the S22 benchmark set of weakly interacting complexes of Jurecka et al. [Phys. Chem. Chem. Phys. 8, 1985 (2006)]. The methods are also compared to full-range RPA approaches. Both range separation and inclusion of the Hartree-Fock exchange kernel largely improve the accuracy of intermolecular interaction energies. The best results are obtained with the method called RSH + RPAx, which yields interaction energies for the S22 set with an estimated mean absolute error of about 0.5-0.6 kcal/mol, corresponding to a mean absolute percentage error of about 7%-9% depending on the reference interaction energies used. In particular, the RSH+RPAx method is found to be overall more accurate than the range-separated method based on long-range second-order Moller-Plesset (MP2) perturbation theory (RSH+MP2). (C) 2010 American Institute of Physics. [doi: 10.1063/1.3431616]
引用
收藏
页数:9
相关论文
共 71 条
[1]  
Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]   van der Waals interactions in density-functional theory [J].
Andersson, Y ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :102-105
[3]   On the exchange-hole model of London dispersion forces [J].
Angyan, Janos G. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (02)
[4]   van der Waals forces in density functional theory:: Perturbational long-range electron-interaction corrections -: art. no. 012510 [J].
Angyán, JG ;
Gerber, IC ;
Savin, A ;
Toulouse, J .
PHYSICAL REVIEW A, 2005, 72 (01)
[5]  
[Anonymous], 2008, MOLPRO VERSION 2008
[6]   Total energy method from many-body formulation [J].
Aryasetiawan, F ;
Miyake, T ;
Terakura, K .
PHYSICAL REVIEW LETTERS, 2002, 88 (16) :4
[7]   Exchange-hole dipole moment and the ospersion interaction [J].
Becke, AD ;
Johnson, ER .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (15)
[8]   The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking [J].
Cerny, J ;
Hobza, P .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2005, 7 (08) :1624-1626
[9]   Long-range corrected double-hybrid density functionals [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (17)
[10]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1