Poincare-Friedrichs inequalities for piecewise H1 functions

被引:383
作者
Brenner, SC [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
Poincare-Friedrichs inequalities; piecewise H(1) functions; nonconforming finite elements; mortar methods; discontinuous Galerkin methods;
D O I
10.1137/S0036142902401311
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Poincare-Friedrichs inequalities for piecewise H(1) functions are established. They can be applied to classical nonconforming finite element methods, mortar methods, and discontinuous Galerkin methods.
引用
收藏
页码:306 / 324
页数:19
相关论文
共 30 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1977, NAVIERSTOKES EQUATIO
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[5]  
Ben Belgacem F, 1999, NUMER MATH, V84, P173, DOI 10.1007/s002119900100
[6]  
BERNARDI C, 1993, NATO ADV SCI INST SE, V384, P269
[7]  
BERNARDI C, 1990, COLL FRANC SEM, P13
[8]   ESTIMATION OF LINEAR FUNCTIONALS ON SOBOLEV SPACES WITH APPLICATION TO FOURIER TRANSFORMS AND SPLINE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :112-&
[9]  
Brenner S.C., 2002, MATH THEORY FINITE E
[10]   Two-level additive Schwarz preconditioners for nonconforming finite element methods [J].
Brenner, SC .
MATHEMATICS OF COMPUTATION, 1996, 65 (215) :897-921