Numerical estimate of a scaling exponent characterizing fluctuating diffusion fronts

被引:4
作者
Debierre, JM [1 ]
Bradley, RM [1 ]
机构
[1] COLORADO STATE UNIV,DEPT PHYS,FT COLLINS,CO 80523
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 01期
关键词
D O I
10.1103/PhysRevE.53.1238
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform large scale Monte Carlo simulations of the fragmentation of bond percolation cluster perimeters on the square lattice at the percolation threshold. Using our data, we obtain a very accurate estimate for a scaling exponent that characterizes the fluctuations of a diffusion front. Our estimate provides strong support for a prediction made by J. F. Gouyet and Y. Boughaleb [Phys. Rev. B 40, 4760 (1989)].
引用
收藏
页码:1238 / 1240
页数:3
相关论文
共 7 条
[1]   EXACT THETA-POINT AND EXPONENTS FOR 2 MODELS OF POLYMER-CHAINS IN 2 DIMENSIONS [J].
BRADLEY, RM .
PHYSICAL REVIEW A, 1990, 41 (02) :914-922
[2]  
DEBIERRE JM, UNPUB
[3]   STRUCTURE OF NOISE GENERATED ON DIFFUSION FRONTS [J].
GOUYET, JF ;
BOUGHALEB, Y .
PHYSICAL REVIEW B, 1989, 40 (07) :4760-4768
[4]  
GUNN JMF, 1985, J PHYS A-MATH GEN, V18, P1095
[5]   MANHATTAN LATTICE THETA-POINT EXPONENTS FROM KINETIC GROWTH WALKS AND EXACT RESULTS FROM THE NIENHUIS O(N) MODEL [J].
PRELLBERG, T ;
OWCZAREK, AL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (06) :1811-1826
[6]   GRADIENT PERCOLATION IN 3 DIMENSIONS AND RELATION TO DIFFUSION FRONTS [J].
ROSSO, M ;
GOUYET, JF ;
SAPOVAL, B .
PHYSICAL REVIEW LETTERS, 1986, 57 (25) :3195-3198
[7]  
[No title captured]