Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae

被引:112
作者
Jagadeeswaran, Guru
Raina, Surabhi
Acharya, Biswa R.
Maqbool, Shahina B.
Mosher, Stephen L.
Appel, Heidi M.
Schultz, Jack C.
Klessig, Daniel F.
Raina, Ramesh [1 ]
机构
[1] Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA
[2] Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
[3] Penn State Univ, Dept Entomol, University Pk, PA 16802 USA
关键词
GH3-LIKE DEFENSE GENE 1; GDG1; salicylic acid; bacterial pathogen; defense signaling; Arabidopsis;
D O I
10.1111/j.1365-313X.2007.03130.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In Arabidopsis, the GH3-like gene family consists of 19 members, several of which have been shown to adenylate the plant hormones jasmonic acid, indole acetic acid and salicylic acid (SA). In some cases, this adenylation has been shown to catalyze hormone conjugation to amino acids. Here we report molecular characterization of the GH3-LIKE DEFENSE GENE 1 (GDG1), a member of the GH3-like gene family, and show that GDG1 is an important component of SA-mediated defense against the bacterial pathogen Pseudomonas syringae. Expression of GDG1 is induced earlier and to a higher level in response to avirulent pathogens compared to virulent pathogens. gdg1 null mutants are compromised in several pathogen defense responses, including activation of defense genes and resistance against virulent and avirulent bacterial pathogens. Accumulation of free and glucoside-conjugated SA (SAG) in response to pathogen infection is compromised in gdg1 mutants. All defense-related phenotypes of gdg1 can be rescued by external application of SA, suggesting that gdg1 mutants are defective in the SA-mediated defense pathway(s) and that GDG1 functions upstream of SA. Our results suggest that GDG1 contributes to both basal and resistance gene-mediated inducible defenses against P. syringae (and possibly other pathogens) by playing a critical role in regulating the levels of pathogen-inducible SA. GDG1 is allelic to the PBS3 (avrPphB susceptible) gene.
引用
收藏
页码:234 / 246
页数:13
相关论文
共 54 条
[1]   Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis [J].
Aarts, N ;
Metz, M ;
Holub, E ;
Staskawicz, BJ ;
Daniels, MJ ;
Parker, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10306-10311
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   Loss of GH3 function does not affect phytochrome- mediated development in a moss, Physcomitrella patens [J].
Bierfreund, NM ;
Tintelnot, S ;
Reski, R ;
Decker, EL .
JOURNAL OF PLANT PHYSIOLOGY, 2004, 161 (07) :823-835
[4]   Affinity labeling fatty acyl-CoA synthetase with 9-p-azidophenoxy nonanoic acid and the identification of the fatty acid-binding site [J].
Black, PN ;
DiRusso, CC ;
Sherin, D ;
MacColl, R ;
Knudsen, J ;
Weimar, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (49) :38547-38553
[5]   A MUTATION IN ARABIDOPSIS THAT LEADS TO CONSTITUTIVE EXPRESSION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
BOWLING, SA ;
GUO, A ;
CAO, H ;
GORDON, AS ;
KLESSIG, DF ;
DONG, XI .
PLANT CELL, 1994, 6 (12) :1845-1857
[6]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[7]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[8]   Host-microbe interactions: Shaping the evolution of the plant immune response [J].
Chisholm, ST ;
Coaker, G ;
Day, B ;
Staskawicz, BJ .
CELL, 2006, 124 (04) :803-814
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   Pseudomonas syringae Hrp type III secretion system and effector proteins [J].
Collmer, A ;
Badel, JL ;
Charkowski, AO ;
Deng, WL ;
Fouts, DE ;
Ramos, AR ;
Rehm, AH ;
Anderson, DM ;
Schneewind, O ;
van Dijk, K ;
Alfano, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :8770-8777