Regularization with a pruning prior

被引:26
作者
Goutte, C
Hansen, LK
机构
[1] Department of Mathematical Modelling, Technical University of Denmark
关键词
regularization; generalization method; Bayesian learning; evidence framework; Laplace prior; comparison with weight decay;
D O I
10.1016/S0893-6080(97)00027-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the use of a regularization prior and its pruning properties. We illustrate the behavior of this prior by conducting analyses both using a Bayesian framework and with the generalization method, on a simple toy problem. Results are thoroughly compared with those obtained with a traditional weight decay. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:1053 / 1059
页数:7
相关论文
共 10 条
[1]   FITTING AUTOREGRESSIVE MODELS FOR PREDICTION [J].
AKAIKE, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1969, 21 (02) :243-&
[2]  
[Anonymous], 1992, SMR
[3]  
Buntine W. L., 1991, Complex Systems, V5, P603
[4]  
GOUTTE C, 1996, NEURAL NETWORKS SIGN, V6
[5]   PRUNING FROM ADAPTIVE REGULARIZATION [J].
HANSEN, LK ;
RASMUSSEN, CE .
NEURAL COMPUTATION, 1994, 6 (06) :1223-1232
[6]  
JAYNES ET, 1985, MAXIMUM ENTROPY BAYE, P1
[7]  
KROGH A, 1992, NIPS, V4
[8]  
MACKAY DJC, 1992, NEURAL COMPUT, V4, P415, DOI [10.1162/neco.1992.4.3.415, 10.1162/neco.1992.4.3.448]
[9]   BAYESIAN REGULARIZATION AND PRUNING USING A LAPLACE PRIOR [J].
WILLIAMS, PM .
NEURAL COMPUTATION, 1995, 7 (01) :117-143
[10]  
WOLPERT D, 1995, 1993 MAXIMUM ENTROPY