Feedforward reduction of the microseism disturbance in a long-base-line interferometric gravitational-wave detector

被引:26
作者
Giaime, JA [1 ]
Daw, EJ
Weitz, M
Adhikari, R
Fritschel, P
Abbott, R
Bork, R
Heefner, J
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] MIT, LIGO Lab, Cambridge, MA 02139 USA
[3] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
关键词
D O I
10.1063/1.1524717
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Standing ocean waves driven by storms can excite surface waves in the ocean floor at twice the wave frequency. These traverse large distances on land and are called the double-frequency (DF) microseism. The Laser Interferometer Gravitational-wave Observatory (LIGO) detector relies on length servos to maintain optical resonance in its 4 km Fabry-Perot cavities, which consist of seismically isolated in-vacuum suspended test mass mirrors in three different buildings. Correcting for the DF microseism motion can require tens of micrometers of actuation, a significant fraction of the feedback dynamic range. The LIGO seismic isolation design provides an external fine actuation system (FAS), which allows long-range displacement of the optical tables that support the test mass suspensions. We report on a feedforward control system that uses seismometer signals from each building to produce correction signals, which are applied to the FAS, largely removing the microseism disturbance independently of length control servos. The root-mean-squared displacement from the microseism near 0.15 Hz can be reduced by 10 dB on average. (C) 2003 American Institute of Physics.
引用
收藏
页码:218 / 224
页数:7
相关论文
共 18 条
[1]   Seismic isolation for Advanced LIGO [J].
Abbott, R ;
Adhikari, R ;
Allen, G ;
Cowley, S ;
Daw, E ;
DeBra, D ;
Giaime, J ;
Hammond, G ;
Hammond, M ;
Hardham, C ;
How, J ;
Hua, W ;
Johnson, W ;
Lantz, B ;
Mason, K ;
Mittleman, R ;
Nichol, J ;
Richman, S ;
Rollins, J ;
Shoemaker, D ;
Stapfer, G ;
Stebbins, R .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (07) :1591-1597
[2]   Measurement of the VIRGO superattenuator performance for seismic noise suppression [J].
Ballardin, G ;
Bracci, L ;
Braccini, S ;
Bradaschia, C ;
Casciano, C ;
Calamai, G ;
Cavalieri, R ;
Cecchi, R ;
Cella, G ;
Cuoco, E ;
D'Ambrosio, E ;
Dattilo, V ;
Di Virgilio, A ;
Fabbroni, L ;
Fidecaro, F ;
Frasconi, F ;
Gaddi, A ;
Gennai, A ;
Gennaro, G ;
Giazotto, A ;
Losurdo, G ;
Holloway, L ;
La Penna, P ;
Lelli, F ;
Majorana, E ;
Mazzoni, M ;
Paoletti, F ;
Pasotti, M ;
Pasqualetti, A ;
Passaquieti, R ;
Passuello, D ;
Poggiani, R ;
Puppo, P ;
Raffaelli, F ;
Rapagnani, P ;
Ricci, F ;
Ruggi, P ;
Stanga, R ;
Taddei, R ;
Vetrano, F ;
Vicerè, A ;
Zhang, Z .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (09) :3643-3652
[3]  
CESSARO RK, 1994, B SEISMOL SOC AM, V84, P142
[4]  
Friedland B., 1986, CONTROL SYSTEM DESIG
[5]   Readout and control of a power-recycled interferometric gravitational-wave antenna [J].
Fritschel, P ;
Bork, R ;
González, G ;
Mavalvala, N ;
Ouimette, D ;
Rong, HS ;
Sigg, D ;
Zucker, M .
APPLIED OPTICS, 2001, 40 (28) :4988-4998
[6]   A passive vibration isolation stack for LIGO: Design, modeling, and testing [J].
Giaime, J ;
Saha, P ;
Shoemaker, D ;
Sievers, L .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (01) :208-214
[7]  
Hough J., 2000, LIVING REV RELATIV, V3, P3
[8]  
Ljung L, 1999, System Identification: Theory for the User, DOI DOI 10.1002/047134608X.W1046.PUB2
[9]  
LUEG P, 1934, Patent No. 2043416
[10]   A HIERARCHY OF PERFORMANCE ANALYSIS TECHNIQUES FOR ADAPTIVE ACTIVE CONTROL OF SOUND AND VIBRATION [J].
MORGAN, DR .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1991, 89 (05) :2362-2369