Polymer-coated long-circulating microparticulate pharmaceuticals

被引:186
作者
Torchilin, VP
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Ctr Imaging & Pharmaceut Res, Charlestown, MA 02129 USA
[2] Harvard Univ, Sch Med, Charlestown, MA 02129 USA
关键词
drug carriers; liposomes; microparticles; prolonged circulation; poly(ethylene glycol);
D O I
10.3109/02652049809006831
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The field of long-circulating microparticulate drug carriers is reviewed. The protective effect of certain polymers including poly(ethylene glycol) on nanoparticulate carriers (liposomes, nanoparticles, micelles) is considered in terms of statistical behaviour of macromolecules in solution. Using liposomes as an example, the mechanism is discussed assuming that surface-grafted chains of flexible and hydrophilic polymers form dense 'conformational clouds' preventing other macromolecules from interaction with the surface even at low concentrations of the protecting polymer. The scale of the protective effect is interpreted as the balance between the energy of the hydrophobic anchor interaction with the liposome membrane core or with the particle surface and the energy of the polymer chain free motion in solution. The possibility of using protecting polymers other than poly(ethylene glycol) is analysed, and examples of such polymers are given, based on polymer-coated liposome biodistribution data. General requirements for protecting polymers are formulated. Sterically protected nanoparticles and micelles are considered, and differences in steric protection of liposomes and particles are discussed. The problem of the preparation of drug carriers combining longevity and targetability is analysed. The biological consequences of steric protection of drug carriers with surface-grafted polymers are discussed, and possible clinical applications for long-circulating pharmaceutical carriers are considered.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 102 条
[1]  
Allen Theresa M., 1994, Journal of Liposome Research, V4, P1, DOI 10.3109/08982109409037027
[2]   PHARMACOKINETICS OF LONG-CIRCULATING LIPOSOMES [J].
ALLEN, TM ;
HANSEN, CB ;
DEMENEZES, DEL .
ADVANCED DRUG DELIVERY REVIEWS, 1995, 16 (2-3) :267-284
[3]   PHARMACOKINETICS OF STEALTH VERSUS CONVENTIONAL LIPOSOMES - EFFECT OF DOSE [J].
ALLEN, TM ;
HANSEN, C .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1068 (02) :133-141
[4]   THE USE OF GLYCOLIPIDS AND HYDROPHILIC POLYMERS IN AVOIDING RAPID UPTAKE OF LIPOSOMES BY THE MONONUCLEAR PHAGOCYTE SYSTEM [J].
ALLEN, TM .
ADVANCED DRUG DELIVERY REVIEWS, 1994, 13 (03) :285-309
[5]  
ALLEN TM, 1992, CANCER RES, V52, P2431
[6]   LIPOSOMES WITH PROLONGED CIRCULATION TIMES - FACTORS AFFECTING UPTAKE BY RETICULOENDOTHELIAL AND OTHER TISSUES [J].
ALLEN, TM ;
HANSEN, C ;
RUTLEDGE, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 981 (01) :27-35
[7]   WATERSOLUBLE POLYMERS IN MEDICINE [J].
BADER, H ;
RINGSDORF, H ;
SCHMIDT, B .
ANGEWANDTE MAKROMOLEKULARE CHEMIE, 1984, 123 (AUG) :457-485
[8]   SPECIFIC TARGETING WITH POLY(ETHYLENE GLYCOL)-MODIFIED LIPOSOMES - COUPLING OF HOMING DEVICES TO THE ENDS OF THE POLYMERIC CHAINS COMBINES EFFECTIVE TARGET BINDING WITH LONG CIRCULATION TIMES [J].
BLUME, G ;
CEVC, G ;
CROMMELIN, MDJA ;
BAKKERWOUDENBERG, IAJM ;
KLUFT, C ;
STORM, G .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1149 (01) :180-184
[9]   MOLECULAR MECHANISM OF THE LIPID VESICLE LONGEVITY INVIVO [J].
BLUME, G ;
CEVC, G .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1146 (02) :157-168
[10]  
Blunk T, 1993, P 20 INT S CONTR REL, P256