Recent developments of induction motor drives fault diagnosis using AI techniques

被引:332
作者
Filippetti, F [1 ]
Franceschini, G
Tassoni, C
Vas, P
机构
[1] Univ Bologna, Dept Elect Engn, I-40136 Bologna, Italy
[2] Univ Parma, I-43100 Parma, Italy
[3] Univ Aberdeen, Dept Engn, Aberdeen AB9 2UE, Scotland
关键词
artificial intelligence; drives diagnostics; electrical machines;
D O I
10.1109/41.873207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a review of the most recent developments in the field of diagnosis of electrical machines and drives based on artificial intelligence (AI), It covers the application of expert systems, artificial neural networks (ANNs), and fuzzy logic systems that can be integrated into each other and also with more traditional techniques. The application of genetic algorithms is considered as well. In general, a diagnostic procedure starts from a fault tree developed on the basis of the physical behavior of the electrical system under consideration. In this phase, the knowledge of well-tested models able to simulate the electrical machine in different fault conditions is fundamental to obtain the patterns characterizing the faults. The fault tree navigation performed by an expert system inference engine leads to the choice of suitable diagnostic indexes, referred to a particular fault, and relevant to build an input data set for specific AI (NNs, fuzzy logic, or neuro-fuzzy) systems, The discussed methodologies, that play a general role in the diagnostic held, are applied to an induction machine, utilizing as input signals the instantaneous voltages and currents. In addition, the supply converter is also considered to incorporate in the diagnostic procedure the most typical failures of power electronic components, A brief description of the various AI techniques is also given; this highlights the advantages and the limitations of using AI techniques. Some applications examples are also discussed and areas for future research are also indicated.
引用
收藏
页码:994 / 1004
页数:11
相关论文
共 62 条
[51]   REMEDIAL STRATEGIES FOR BRUSHLESS DC DRIVE FAILURES [J].
SPEE, R ;
WALLACE, AK .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1990, 26 (02) :259-266
[52]   NON-TRANSFORMATIONAL MATRIX ANALYSIS OF ELECTRICAL MACHINERY [J].
STEPINA, J .
ELECTRIC MACHINES AND ELECTROMECHANICS, 1979, 4 (2-3) :255-268
[53]  
STRAVOU A, 1994, P ICEM 94, V2, P261
[54]  
Terano T., 1994, APPL FUZZY SYSTEMS
[55]  
Thompson WR, 1999, STUD INT R, P3
[56]  
Vas P., 1993, CONDITION MONITORING
[57]  
VAS P, 1999, ARTIFICIAL INTELLIGE
[58]  
VENET P, 1991, P EPE 91 FLOR IT SEP, V3, P112
[59]  
WISER RS, 1998, P IEEE IECON 98 AACH, P1544
[60]  
WISER RS, 1998, C REC IEEE IAS ANN M, P278