Hydrogen exchange kinetics of RNase A and the urea:TMAO paradigm

被引:67
作者
Qu, YX [1 ]
Bolen, DW [1 ]
机构
[1] Univ Texas, Med Branch, Dept Human Biol Chem & Genet, Galveston, TX 77555 USA
关键词
D O I
10.1021/bi0206457
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A key paradigm in the biology of adaptation holds that urea affects protein function by increasing the fluctuations of the native state, while trimethylamine N-oxide (TMAO) affects function in the opposite direction by decreasing the normal fluctuations of the native ensemble. Using urea and TMAO separately and together, hydrogen exchange (HX) studies on RNase A at pH* 6.35 were used to investigate the basic tenets of the urea:TMAO paradigm. TMAO (1 M) alone decreases HX rate constants of a select number of sites exchanging from the native ensemble, and low urea alone increases the rate constants of some of the same sites. Addition of TMAO to urea solutions containing RNase A also suppresses HX rate constants. The data show that urea and TMAO independently or in combination affect the dynamics of the native ensemble in opposing ways. The results provide evidence in support of the counteraction aspect of the urea:TMAO paradigm linking structural dynamics with protein function in urea-rich organs and organisms. RNase A is so resistant to urea denaturation at pH* 6.35 that even in the presence of 4.8 M urea, the native ensemble accounts for >99.5% of the protein. An essential test, devised to determine the HX mechanism of exchangeable protons, shows that over the 0-4.8 M urea concentration range nearly 80% of all observed sites convert from EX2 to EX1. The slow exchange sites are all EX1; they do not exhibit global exchange even at urea concentrations (5.8 M) well into the denaturation transition zone, and their energetically distinct activated complexes leading to exchange gives evidence of residual structure. Under these experimental conditions, the use of DeltaG(HX) as a basis for HX analysis of RNase A urea denaturation is invalid.
引用
收藏
页码:5837 / 5849
页数:13
相关论文
共 69 条
[1]   Microsecond protein folding kinetics from native-state hydrogen exchange [J].
Arrington, CB ;
Robertson, AD .
BIOCHEMISTRY, 1997, 36 (29) :8686-8691
[2]   Defining protein ensembles with native-state NH exchange: Kinetics of interconversion and cooperative units from combined NMR and MS analysis [J].
Arrington, CB ;
Teesch, LM ;
Robertson, AD .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (03) :1265-1275
[3]   Correlated motions in native proteins from MS analysis of NH exchange: Evidence for a manifold of unfolding reactions in ovomucoid third domain [J].
Arrington, CB ;
Robertson, AD .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (01) :221-232
[4]  
BAGNASCO S, 1986, J BIOL CHEM, V261, P5872
[5]   PRIMARY STRUCTURE EFFECTS ON PEPTIDE GROUP HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (01) :75-86
[6]   PROTEIN STABILITY PARAMETERS MEASURED BY HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1994, 20 (01) :4-14
[7]   PROTEIN-FOLDING INTERMEDIATES - NATIVE-STATE HYDROGEN-EXCHANGE [J].
BAI, YW ;
SOSNICK, TR ;
MAYNE, L ;
ENGLANDER, SW .
SCIENCE, 1995, 269 (5221) :192-197
[8]   Forcing thermodynamically unfolded proteins to fold [J].
Baskakov, I ;
Bolen, DW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (09) :4831-4834
[9]   Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function:: A test of the counteraction hypothesis [J].
Baskakov, I ;
Wang, AJ ;
Bolen, DW .
BIOPHYSICAL JOURNAL, 1998, 74 (05) :2666-2673
[10]   The osmophobic effect: Natural selection of a thermodynamic force in protein folding [J].
Bolen, DW ;
Baskakov, IV .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 310 (05) :955-963