Conserved ERAD-Like quality control of a plant polytopic membrane protein

被引:100
作者
Müller, J
Piffanelli, P
Devoto, A
Miklis, M
Elliott, C
Ortmann, B
Schulze-Lefert, P [2 ]
Panstruga, R
机构
[1] John Innes Ctr, Sainsbury Lab, Norwich NR4 7UH, Norfolk, England
[2] Max Planck Inst Plant Breeding Res, Dept Plant Microbe Interact, D-50829 Cologne, Germany
[3] Amaxa, D-50829 Cologne, Germany
关键词
D O I
10.1105/tpc.104.026625
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The endoplasmic reticulum (ER) of eukaryotic cells serves as a checkpoint tightly monitoring protein integrity and channeling malformed proteins into different rescue and degradation routes. The degradation of several ER lumenal and membrane-localized proteins is mediated by ER-associated protein degradation (ERAD) in yeast (Saccharomyces cerevisiae) and mammalian cells. To date, evidence for the existence of ERAD-like mechanisms in plants is indirect and based on heterologous or artificial substrate proteins. Here, we show that an allelic series of single amino acid substitution mutants of the plant-specific barley (Hordeum vulgare) seven-transmembrane domain mildew resistance o (MLO) protein generates substrates for a postinsertional quality control process in plant, yeast, and human cells, suggesting conservation of the underlying mechanism across kingdoms. Specific stabilization of mutant MLO proteins in yeast strains carrying defined defects in protein quality control demonstrates that MLO degradation is mediated by HRD pathway-dependent ERAD. In plants, individual aberrant MLO proteins exhibit markedly reduced half-lives, are polyubiquitinated, and ran be stabilized through inhibition of proteasome activity. This and a dependence on homologs of the AAA ATPase CDC48/p97 to eliminate the aberrant variants strongly suggest that MLO proteins are endogenous substrates of an ERAD-related plant quality control mechanism.
引用
收藏
页码:149 / 163
页数:15
相关论文
共 61 条
[1]  
Ausubel FA, 1995, CURRENT PROTOCOLS MO
[2]   THE RECOGNITION COMPONENT OF THE N-END RULE PATHWAY [J].
BARTEL, B ;
WUNNING, I ;
VARSHAVSKY, A .
EMBO JOURNAL, 1990, 9 (10) :3179-3189
[3]   Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation [J].
Bays, NW ;
Gardner, RG ;
Seelig, LP ;
Joazeiro, CA ;
Hampton, RY .
NATURE CELL BIOLOGY, 2001, 3 (01) :24-29
[4]   Endoplasmic reticulum quality control of oligomeric membrane proteins:: Topogenic determinants involved in the degradation of the unassembled Na,K-ATPase α subunit and in its stabilization by β subunit assembly [J].
Béguin, P ;
Hasler, U ;
Staub, O ;
Geering, K .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (05) :1657-1672
[5]   De3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins [J].
Bordallo, J ;
Plemper, RK ;
Finger, A ;
Wolf, DH .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (01) :209-222
[6]   ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants [J].
Brandizzi, F ;
Hanton, S ;
daSilva, LLP ;
Boevink, P ;
Evans, D ;
Oparka, K ;
Denecke, J ;
Hawes, C .
PLANT JOURNAL, 2003, 34 (03) :269-281
[7]   Role of the ubiquitin-selective CDC48UFD1/NPL4 chaperone (segregase) in ERAD of OLE1 and other substrates [J].
Braun, S ;
Matuschewski, K ;
Rape, M ;
Thoms, S ;
Jentsch, S .
EMBO JOURNAL, 2002, 21 (04) :615-621
[8]   ER protein quality control and proteasome-mediated protein degradation [J].
Brodsky, JL ;
McCracken, AA .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 1999, 10 (05) :507-513
[9]   The barley mlo gene: A novel control element of plant pathogen resistance [J].
Buschges, R ;
Hollricher, K ;
Panstruga, R ;
Simons, G ;
Wolter, M ;
Frijters, A ;
vanDaelen, R ;
vanderLee, T ;
Diergaarde, P ;
Groenendijk, J ;
Topsch, S ;
Vos, P ;
Salamini, F ;
Schulze-Lefert, P .
CELL, 1997, 88 (05) :695-705
[10]   Degradation of proteins from the ER of S-cerevisiae requires an intact unfolded protein response pathway [J].
Casagrande, R ;
Stern, P ;
Diehn, M ;
Shamu, C ;
Osario, M ;
Zúñiga, M ;
Brown, PO ;
Ploegh, H .
MOLECULAR CELL, 2000, 5 (04) :729-735